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The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The
article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics.
The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes,
which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The
Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The “weakly nonlinear” limit of thin double layers is then
analyzed by matched asymptotic expansions in the small parameter«=lD /L, wherelD is the screening length
andL the electrode separation. At leading order, the system initially behaves like anRCcircuit with a response
time of lDL /D (not lD

2 /D), whereD is the ionic diffusivity, but nonlinearity violates this common picture and
introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse
part of the double layer couples to bulk diffusion at the time scale,L2/D. In the “strongly nonlinear” regime
(controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concen-
tration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of
more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.
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I. INTRODUCTION

There is rapidly growing interest in microelectrochemical
or biological systems subject to time-dependent applied volt-
ages or currents. For example, ac voltages applied at micro-
electrodes can be used to pump liquid electrolytes[1–11], to
separate or self-assemble colloidal particles[12–18], and to
manipulate biological cells and vesicles[19–21]. Conversely,
oscillating pressure-driven flows can be used to produce
frequency-dependent streaming potentials to probe the struc-
ture of porous media[22–24].

A common feature of these diverse phenomena is the dy-
namics of diffuse charge in microscopic systems. Although
the macroscopic theory of neutral electrolytes with quasi-
equilibrium double layers is very well developed in electro-
chemistry[25,26] and colloidal science[27–29], microscopic
double-layer charging at subdiffusive time scales is not as
well understood. Although much progress has been made in
various disjoint communities, it is not so widely appreciated,
and some open questions remain, especially regarding non-
linear effects. The goals of this paper are, therefore, to(i)
review the relevant literature and(ii ) analyze a basic model
problem in considerable depth, highlighting some interest-
ing, results and directions for further research.

To illustrate the physics of diffuse-charge dynamics, con-
sider the simplest possible case sketched in Fig. 1: a dilute
z:z electrolyte suddenly subjected to a dc voltage, 2V, by
parallel-plate blocking electrodes separated by 2L. Naively,
one might assume a uniform bulk electric field,E=V/L, but
the effect of the applied voltage is not so trivial. Ions migrate
in the bulk field and eventually screen it completely(since
“blocking electrodes” do not support a Faradaic current).

What is the characteristic time scale of this response? For
charge relaxation, one usually quotes the time,tD=lD

2 /D, for

diffusion with a diffusivity D across one Debye screening
length,

lD =Î «kT

2z2e2Cb
, s1d

where Cb is the average solute concentration,k the Boltz-
mann’s constant,T the temperature,e the electronic charge,
and « the permittivity of the solvent[27–29]. The Debye
time, tD, is a material property of the electrolyte, which for
aqueous solutions(lD<1–100 nm, D<103 mm2/s) is

FIG. 1. Sketch of the model problem. A voltage 2V is suddenly
applied to a dilute, symmetric, binary electrolyte between parallel-
plate blocking electrodes separated by 2L.
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rather small, in the range of ns toms . More generally, when
Faradaic reactions occur(for a nonblocking electrode), the
diffuse charge may also vary on the much slower, geometry-
dependent scale for bulk diffusion given bytL=L2/D, pro-
portional to the square of the electrode separation.

These two relaxation times,tD for the charge density and
tL for the concentration, are usually presented as the only
ones controlling the evolution of the system, e.g., as in the
recent textbooks of Hunter[27] (Ch. 8) and Lyklema[29]
(Chs. 4.6c). Dimensional analysis, however, allows for many
other time scales obtained by combining these two, such as
the harmonic mean,

tc = ÎtDtL =
lDL

D
, s2d

proportional to the electrode separation(not squared). Below,
we will show that this is the primary time scale for diffuse-
charge dynamics in electrochemical cells, althoughtD, tL,
and other time scales involving surface properties also play
important roles, especially at large voltages(even without
Faradaic processes). The same applies to highly polarizable
or conducting colloidal particles, whereL is the particle size.

Although the basic charging time,tc, is familiar in several
scientific communities[31–34], it is not as widely known as
it should be. Recently, it has been rediscovered as the(in-
verse) frequency of “ac pumping” at patterned-surface mi-
croelectrodes[1,6]. As in the past, its theoretical justification
has sparked some discussions[35,36] of the applicability of
classical circuit models[37,38] in which tc arises as the “RC
time” of a bulk resistor in series with a double-layer capaci-
tor (see below).

Here, we attempt to unify and modestly extend a large
body of prior work on diffuse-charge dynamics in the context
of our model problem, paying special attention to the effects
which undermine the classical circuit approximation. Going
beyond most previous mathematical studies, we allow for
compact-layer capacitance, bulk concentration polarization,
and large voltages outside the linear regime. For the nonlin-
ear analysis, the method of matched asymptotic expansions
[39–41] must be adapted for multiple time scales at different
orders of the expansion, so the problem also presents an
opportunity for mathematicians to develop a time-dependent
boundary-layer theory.

We begin in Sec. II by reviewing some of the relevant
literature on electrochemical relaxation. In Sec. III we state
the mathematical problem for a suddenly applied dc voltage,
and in Sec. IV we analyze the linear response using Laplace
transforms. In Sec. V we nondimensionalize the problem and
describe the numerical solutions used to test our analytical
approximations. In Sec. VI, we derive uniformly valid
asymptotic expansions in the “weakly nonlinear” limit of
thin double layers and discuss the connection with circuit
models. Apparently for the first time(for this problem), in
Sec. VII we analyze higher-order corrections, and in Sec.
VIII we briefly discuss the “strongly nonlinear” regime at
large voltages, where the expansions are no longer valid. In
Sec. IX, we conclude by briefly discussing extensions to
higher dimensions, general electrolytes, and Faradaic pro-
cesses, and pose some open questions.

II. HISTORICAL REVIEW

A. Electrical circuit models

In electrochemistry, the most common theoretical ap-
proach is to construct an equivalent electrical circuit, whose
parameters are fit to experimental impedance spectra or
pulsed-voltage responses, as recently reviewed by Mac-
donald[37] and Geddes[38]. The basic idea of an equivalent
circuit is apparently due to Kohlrausch[42] in 1873, and the
first mathematical theory of Kohlrausch’s “polarization ca-
pacitance” was given by Warburg at the end of the nineteenth
century[46,47]. Warburg argued that ac electrochemical re-
sponse is dominated by pure diffusion of the active species
and can be described as a bulk resistance in series with a
frequency-dependent capacitance, which combine to form
the “Warburg impedance.”

Earlier, Helmholtz[43,44] had suggested that the solid-
electrolyte interface acts like a thin capacitor, for which he
apparently coined the term, “double layer”[25]. In 1903,
Krüger [48] unified Warburg’s bulk impedance with Helm-
holtz’ double-layer capacitor in the first complete ac circuit
model for an electrochemical cell, which forms the basis for
the modern “Randles circuit”[49]. In this context, the relax-
ation time for charging of the double layers has been known
to depend on the electrode separation, via the bulk resistance,
for at least a century.

The study of diffuse charge in the double layer was initi-
ated in the same year by Gouy[45], who suggested that
excess ionic charge in solution near the electrode could be
viewed as a capacitance,CD=« /lD. He was also the first to
derive Eq.(1) for lD (obviously with a different notation) in
his original theory of the diffuse double layer in equilibrium
[50,51]. With the availability of Einstein’s relation[52] for
the mobility, m=D /kT, at that time, the dc bulk resistance
(per unit area) could have been calculated as

Rb =
V

J
=

LE0

sbE0
=

lD
2 L

«D
s3d

(for a symmetric binary electrolyte of equal mobilities),
whereJ is the current density and

sb =
«D

lD
2 =

2szed2C0D

kT
s4d

is the bulk conductivity. Therefore, the basic time scale in
Eq. (2) has essentially been contained in circuit models since
roughly 1910, as the relaxation time,

tc = RbCD =
lDL

D
=

CDL

sb
=

«L

lDsb
, s5d

althoughtc was not stated explicitly aslDL /D for perhaps
another 50 years[31].

Today, Gouy’s screening length bears the name of Debye,
who rederived it in 1923 as part of his seminal work with
Hückel [53,54] on charge screening in bulk electrolytes, us-
ing an equivalent formalism. Debye and Hückel solved for
the spherical screening cloud around an ion, and, due to the
low potentials involved, they linearized the transport equa-
tions, allowing them to handle general electrolytes. When
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Gouy [51] considered the identical problem of screening
near a flat, blocking electrode more than a decade earlier, he
obtained exact solutions to full nonlinear equations for the
equilibrium potential profile in several cases of binary elec-
trolytes,z+/z−=1,2, and 1/2,wherez+ andz− are the cation
and anion charge numbers, respectively.

A few years later, Chapman[55] independently derived
Gouy’s solution for a univalent electrolyte,z+=z−=1, the
special case of the “Gouy-Chapman theory” for which they
are both primarily remembered today. Chapman also gave a
simple form for the charge-voltage relation of the diffuse-
layer capacitor in this case, which, upon differentiation,
yields a simple formula for the nonlinear differential capaci-
tance of the diffuse layer,

CDszd =
«

lD
coshS zez

2kT
D , s6d

where z is the voltage across the diffuse layer in thermal
equilibrium.(Here, we include the trivial extension to a gen-
eral z:z electrolyte.) Combining Eqs.(3) and (6), we also
obtain the basic relaxation time,tc, in Eq.(2) multiplied by a
potential-dependent factor in the usual case of nonzero equi-
librium zeta potential(in the absence of an applied voltage).
This factor may be neglected in the Debye-Hückel limit of
small potentials,z!kT/ze, but it becomes important at large
potentials and generally slows down the final stages of
double-layer charging.

More sophisticated models of the double layer were pro-
posed by many subsequent authors[56,57] and incorporated
into ac circuit models for electrochemical cells[25,58,59].
Naturally, the original ideas of Helmholtz and Gouy were
eventually combined into a coherent whole. In 1924, Stern
[60] suggested decomposing the double layer into a “com-
pact” (Helmholtz) part within a molecular distance of the
surface and a “diffuse”(Gouy) part extending into the solu-
tion at the scale of the screening length. Physically, the com-
pact layer is intended to describe ions(at the outer Helm-
holtz plane) whose solvation molecules are in contact with
the surface, although specifically adsorbed ions(themselves
in contact with the surface) may also be included[61]. Re-
gardless of the precise microscopic picture, however, Stern
introduced the compact layer as an intrinsic surface capaci-
tance, which cuts off the divergent capacitance of the diffuse
layer, Eq.(6), at large zeta potentials.

Using this model of two capacitors in series and neglect-
ing specific adsorption, Grahame[62] applied the Gouy-
Chapman theory for the diffuse part and inferred the nonlin-
ear differential capacitance of the compact part from his
famous experiments on electrified liquid-mercury drops.
Macdonald[63] then developed a mathematical model for
double layers at metal electrodes by viewing the compact
layer as a parallel-plate capacitor, as we do below, although
he also allowed its thickness and capacitance to vary due to
electrostriction and dielectric saturation[64]. The reader is
referred to various recent reviews[37,38,59] to learn how
other effects neglected below, such as specific adsorption and
Faradaic processes for nonblocking electrodes, have been in-
cluded empirically in modern circuit models.

One such effect is the “frequency dispersion of capaci-
tance” for blocking solid electrodes in contact with liquid
electrolytes[65]. Simple capacitance is well established for
atomically uniform electrodes, such as liquid mercury drops
and single crystals, but polycrystalline, rough, or porous
electrodes tend to exhibit an additional “constant phase ele-
ment,” where the capacitance decays with a power of the
frequency (typically 0.7–0.9). Capacitance dispersion has
long been attributed to geometrical surface roughness[66],
said to introduce resistors of varying lengths, but recent ex-
periments implicate(poorly understood) atomic-scale inho-
mogeneities[65,67]. Here, we focus on bulk relaxation and
ignore such effects, but we pay special attention to the valid-
ity of classical circuit models used to interpret experimental
data.

In spite of a century of research, open questions remain
about the applicability of circuit models[38], and even the
most sophisticated fits to experimental data still suffer from
ambiguities[37]. One problem is the somewhat arbitrary dis-
tinction between the diffuse layers and the bulk electrolyte,
which in fact comprise a single, continuous region. Even
accepting this partition, it is clear that the nonuniform evo-
lution of ionic concentrations in both regions cannot be fully
captured by homogeneous circuit elements[68]. Another
problem is the further partitioning of the double layer into
two (or more) poorly defined regions at atomic lengths
scales, where macroscopic continuum theories(e.g., for di-
electric response) are of questionable validity[69].

B. Microscopic transport models

An alternative theoretical approach, pursued below, is to
solve the time-dependent Nernst-Planck equations[70–72]
for ionic transport across the entire cell(outside any
molecular-scale compact layers) without distinguishing be-
tween the diffuse-charge layers and the quasineutral bulk.
Because this “phenomenological”[32] approach requires
solving Poisson’s equation for the mean-field electrostatic
potential (self-consistently generated by the continuum
charge density) down to microscopic (and sometimes
atomic) length scales, it lacks the thermodynamic justifica-
tion of traditional macroscopic theories based on bulk elec-
troneutrality and electrochemical potentials[26]. Neverthe-
less, it addresses time-dependent charge-relaxation
phenomena, which do occur in real systems, with fewerad
hoc assumptions than circuit models, and thus may be con-
sidered closer to first principles. The use of the Nernst-
Planck equations at scales smaller than the screening length
(but still larger than atomic dimensions) is also supported by
the success of the Gouy-Chapman theory in predicting the
diffuse-layer capacitance in a number of experimental sys-
tems(e.g., Refs.[62,63]), because the theory is based on the
steady-state Nernst-Planck equations for thermal equilib-
rium. The main difficulty in working with the Nernst-Planck
equations, aside from mathematical complexity, is perhaps in
formulating appropriate boundary conditions at the electrode
surface, just outside any compact layers.

Although the response to a suddenly applied dc voltage
has been considered by a few authors in the linear[73,74,76]
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and nonlinear[32,75] regimes, as we also do below, much
more analysis has been reported for the case of weak ac
forcing, where the equations are linearized and the time de-
pendence is assumed to be sinusoidal. These simplifications
are made mainly for analytical convenience, although they
have direct relevance for the interpretation of impedance
spectra. An early analysis of this type was due to Ferry[30],
who considered the response of a semi-infinite electrolyte to
an oscillating charge density applied at a electrode surface.
Ferry’s treatment is formally equivalent to the classical
theory of dielectric dispersion in bulk electrolytes[77,78].
Naturally, in both cases the same time scale,tD=lD

2 /D,
arises, and the relaxation of the double layer has no depen-
dence on the macroscopic geometry.

Ferry’s analysis of a single electrode is consistent with the
common intuition that double-layer charging should be a
purely microscopic process, but one might wonder how the
electrode could draw a charge “from infinity” when an infi-
nite electrolyte has infinite resistance. Indeed, as emphasized
by Buck[76] and Macdonald[31], and confirmed by detailed
comparisons with experimental impedance spectra, Ferry’s
analysis is fundamentally flawed, starting from the boundary
conditions: It is not possible to control the microscopic
charge density at an electrode surface and neglect its cou-
pling to bulk transport processes; instead, one imposes a
voltage relative to another electrode and observes the result-
ing current(or vice versa), while the surface charge density
evolves self-consistently.

Buck [76] eventually corrected Ferry’s analysis to account
for the missing “IR drop” across two electrodes, which im-
poses the initial surface charge density(or, alternatively,
voltage). Nevertheless, the physical picture of a double-layer
responding locally to “charge injection,” independent of bulk
transport processes, persists to the present day. For example,
recent textbooks on colloidal science(Hunter [27], p. 408;
Lyklema [29], p. 4.78) present a slightly different version of
Ferry’s analysis(attributed to O’Brien) as the canonical
problem of “double-layer relaxation:” the response of a semi-
infinite electrolyte to a suddenly imposed, constant surface
charge density. This gives some insight into high-frequency
dielectric dispersion of nonpolarizable colloids(the usual
case), but it is not relevant for polarizable particles and elec-
trodes. Three decades after Buck and Macdonald, it is worth
re-emphasizing the fundamental coupling of double-layer
charging of bulk transport in finite, polarizable systems.

The mathematical theory of ac response for a finite, two-
electrode system began with Jaffé’s analysis for semiconduc-
tors [79,80] and was extended to liquid electrolytes by
Chang and Jaffé[81]. A number of restrictive assumptions in
these studies, such as a uniform electric field, were relaxed
by Macdonald[82] for semiconductors and electrolytes, and
independently by Friauf[83] for ionic crystals. These au-
thors, who gave complete mathematical solutions, also al-
lowed for bulk generation/recombination reactions, which
are crucial for electrons and holes in semiconductors. Subse-
quent authors mostly neglected bulk reactions in studies of
liquid [31,76,84–86] and solid[74,87] electrolytes, while fo-
cusing on other effects, such as arbitrary ionic valences and
the compact layer.

Although it is implicit in earlier work, Macdonald[31]
clearly identified the geometry-dependent time scaletc

=lDL /D (in this form) as governing the relaxation of an
electrochemical cell. It was also derived independently by
Kornyshev and Vorontyntsev[74,75] in the Russian literature
on solid electrolytes with one mobile ionic species[32]. With
Itskovich [88], these authors also modeled the compact-layer
capacitance via a mixed Dirichlet-Neumann condition on the
Nernst-Planck equations. This classical boundary condition
[25], also used below, introduces another length scale,lS, the
effective width of the Stern layer, which also affects the time
scales for electrochemical relaxation.

Other important surface properties have also been in-
cluded in mathematical analyses of ac response. For ex-
ample, several recent studies of blocking electrodes have in-
cluded the effect of a nonzero equilibrium zeta potential
(away from the point of zero charge) [68,89–91], building on
the work of Delacey and White[92]. A greater complication
is to include Faradaic processes at nonblocking electrodes
through boundary conditions of the Butler-Volmer type
[26,56,57], as suggested by Levich[93] and Frumkin[94].
This approach has been followed in various analyses of ac
response around base states of zero[32,75,88,95–97] and
nonzero[98,99] steady Faradaic current. Numerical solutions
of the time-dependent Nernst-Planck equations have also
been developed for ac response and more general situations
[92,100,101], following the work of Cohen and Cooley
[102].

C. Colloids and microfluidic systems

Diffuse-charge dynamics occur not only near electrodes,
but also around colloidal particles and in microfluidic sys-
tems, where the coupling with fluid flow results in time-
dependent, nonlinear electrokinetic phenomena. This review
unifies some of the fairly disjoint literatures on diffuse-
charge dynamics in these areas, with the older literature in
electrochemistry discussed above. Compared to the latter,
more sophisticated mathematical analyses are often done in
colloidal science and electromicrofluidics, starting from the
Nernst-Planck equations for ion transport and the Navier-
Stokes equations for fluid mechanics in two or three dimen-
sions. On the other hand, with the notable exception of the
Ukrainian school[29,34,103,104], less attention is paid to
surface properties, and simple boundary conditions are usu-
ally assumed(constant zeta potential and complete blocking
of ions), which exclude diffuse-charge dynamics.

This might explain why the material time scaletD is em-
phasized as the primary one for double-layer relaxation
around colloidal particles[27–29], although the mixed time
scaletc=sL /lDdtD has come to be recognized as controlling
bulk-field screening by electrodes[68,89–91]. This thinking
can be traced back to the seminal work of Debye and Falk-
enhagen[77,78] on dielectric dispersion in bulk electrolytes
mentioned above. In that context, when a background field
Eb is applied to an electrolyte, the relevant geometrical
length is the size of the screening cloud around an ion,L
=lD, over which a voltage,EblD, is effectively applied. The
relevantRC time for the polarization of the screening cloud
is then tc=lDlD /D=tD. The possible role of geometry is
masked by the presence of only one relevant length scale,
lD.
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For colloidal particles, which are usually much larger than
the double-layer thickness, the second time scale,ta=a2/D,
for bulk diffusion around a particle of radius,a, becomes
important, especially in strong fields. If there is significant
surface conduction, or the particle is conducting, the “RC”
time scaletc=lDa/D can also become important. In general,
double-layer relaxation is thus sensitive to the size and shape
of the particle. Although it is largely unknown(and rarely
cited) in the West, many effects involving nonuniform
double-layer polarization around colloidal particles have
been studied under the name, “nonequilibrium electric sur-
face phenomena”[33], as recently reviewed by Dukhin
[34,104].

The colloidal analog of our model problem involving a
blocking electrochemical cell is that of an ideally polariz-
able, metal particle in a suddenly applied background electric
field. Following a nearly instantaneous electronic relaxation
making metal equipotential, a slower ionic relaxation around
the particle, mostly in the double layer, screens the metal’s
surface charge. For a spherical particle, the response to the
applied field is fully described by the induced dipole mo-
ment, which contains contributions from both electronic and
ionic relaxations[33].

This situation has received much less attention than the
usual case of nonconducting particles of fixed surface charge
density, but it has an interesting history. The nonuniform
polarization of the double layer for a metal particle was de-
scribed by Levich[105], using Helmholtz’s capacitor model.
Simonov and Shilov[106,107] later considered diffuse
charge and showed that the double-layer contribution to the
induced dipole moment arises at the time scaletc=lDa/D,
as bulk conduction transfers charge from the part of the
double-layer facing away from the field to the part facing
toward the field. The two hemispheres may be viewed as
capacitors coupled through a continuous bulk resistor[107],
as in theRC circuit model of dc electrochemical cells de-
scribed above. The charging process continues until the re-
distribution of diffuse-charge completely eliminates the nor-
mal component of the electric field responsible for charging
the double layer.

Diffuse-charge dynamics is important in the context of
colloids because it affects electrokinetic phenomena. In the
metal-sphere example, the remaining tangential component
of the field interacts with the nonuniform induced diffuse
charge (and zeta potential) to cause nonlinear electro-
osmotic flows[103,108], which cause hydrodynamic interac-
tions between colloidal particles. Although these flows have
little effect on the electrophoresis of charged polarizable par-
ticles in uniform dc fields[109,110], they significantly affect
dielectrophoresis in nonuniform ac fields[111,112], where
the time dependence of double-layer relaxation also plays an
important role.

These developments followed from studies of Dukhin,
Deryagin, and collaborators[33,34,113,114] on the effects of
surface conduction and concentration gradients on electrical
polarization and electro-osmotic flows around highly charged
nonconducting particles, which was also extended to polar-
izable particles[103]. (Similar ideas were also pursued later
in the Western literature, with some new results
[27,115–118].) Earlier still, Bikerman[119–121] presented

the theory of surface conduction in the double layer, and
Overbeek[122] calculated in detail the effect of nonequilib-
rium double-layer polarization on electrophoresis.

Diffuse-charge dynamics has begun to be exploited in mi-
crofluidic devices, albeit without the benefit of the prior lit-
erature in electrochemistry and colloidal science discussed
above. In a series of recent papers, Ramos and collaborators
have predicted and observed “ac electro-osmosis” at a pair of
blocking microelectrodes[1–5]. Their simple explanation of
double-layer dynamics[1,2], supported by a mathematical
analysis of ac response in two dimensions[4], is similar to
that of Simonov and Shilov for a metal particle in an ac field
[107], and the resulting electro-osmotic flow is of the type
described by Gamanovet al. for metal particles[108]. An
important difference, however, is that ac electro-osmosis oc-
curs at fixed microelectrodes, whose potentials are controlled
externally, as opposed to free colloidal particles. Ajdari[6]
has proposed a similar means of pumping liquids using ac
voltages applied at an array of microelectrodes, where bro-
ken symmetries in surface geometry or chemistry generally
lead to net pumping past the array, as observed in subsequent
experiments[7–10]. These are all examples of the general
principle of “induced-charge electro-osmosis”[123,124],
where diffuse-charge dynamics at polarizable surfaces(not
necessarily electrodes) are used to drive microflows with ac
or dc forcing. Clearly, the full range of possible microfluidic
applications of time-dependent nonlinear electrokinetics has
yet to be explored.

D. The limit of thin double layers

All of the analytical studies cited above that go beyond
linear response(and most that do not) are based on the thin-
double-layer approximation,lD!L. In this limit, the bulk
electrolyte remains quasineutral, and the double layer re-
mains in thermal quasiequilibrium, even with time-
dependent forcing(slower thantD) [26–29,34]. The same
limit also justifies the general notion of circuit models for the
diffuse part of the double layer and, in the absence of con-
centration gradients, the neutral bulk region.

As shown by Grafov and Chernenko[125,126] in the So-
viet Union, and by Newman[127] and Macgillivray[128] in
the United States, the thin double-layer approximation for
electrochemical cells can be given “firm”(but not necessarily
“rigorous”) mathematical justification by the method of
matched asymptotic expansions[39–41] in the small param-
eter e=lD /L. For steady Faradaic conduction, the usual
leading-order approximation involves a neutral bulk with
charged boundary layers ofOsed dimensionless width, which
has since been established rigorously in a number of studies
by mathematicians[129–134]. The standard asymptotic ap-
proximation breaks down, however, near Nernst’s diffusion-
limited current, where the concentration at the cathode van-
ishes. At the limiting current[135], the boundary layer
expands toOse2/3d width, while at still larger currents[136],
a layer of “space charge” extends out toOs1d distances into
the bulk region, although the effect of realistic boundary con-
ditions (Faradaic processes, compact layer, etc.) remains to
be studied in these exotic regimes. Matched asymptotic ex-
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pansions are also beginning to be used for time-dependent
electrochemical problems with Faradaic processes[98,99]
below the limiting current.

Perhaps because it originated in fluid mechanics[41], the
method of matched asymptotic expansions has been used
extensively in colloidal science and microfluidics
[4,34,114–118,137,138], albeit with varying degrees of
mathematical rigor. In any case, the advantages of the tech-
nique are to(i) justify the assumption of equilibrium struc-
ture for the double layers(at leading order), regardless of
transport processes in the neutral bulk, and(ii ) view the
double layers as infinitely thin at the bulk length scale, which
is particularly useful in multidimensional problems. For stat-
ics or dynamics at the bulk diffusion time, it is usually pos-
sible to construct uniformly valid approximations by adding
the inner and outer solutions and subtracting the overlap.

The thin double layer approximation is “asymptotic” as
e→0, which means that the ratio of the approximation to the
exact solution approaches unity for sufficiently smalle, with
all other parameters held fixed. For any fixede.0 (no mat-
ter how small), however, the approximation breaks down at
sufficiently large voltages. The general criterion

lD

a
coshS zez

2kT
D ! 1 s7d

is often quoted for the validity of Smoluchowski’s formula
for the electrophoretic mobility of a thin-double-layer par-
ticle [27], as justified by numerical calculations[139]. This is
related to Dukhin’s seminal work on double-layer distortion
around a spherical particle[34,114,138]: In the case of
highly charged particles,z@kT/ze, the “Dukhin number”
Du (which he called “Rel” ) controls corrections to the thin-
double-layer limit, Du=0.

The Dukhin number is defined as the ratio of the double-
layer surface conductivityss to the bulk conductivitysb in
Eq. (4) per geometrical length,a: Du=ss/sba. Although its
effect on electrophoresis was explored in detail by Dukhin,
the same dimensionless group was defined a few decades
earlier by Bikerman[121], who also realized that it would
play a fundamental role in electrokinetic phenomena. In a
symmetric binary electrolyte with equal diffusivities, the
Dukhin number can be put in the simple form,

Du =
2lDs1 + md

a
FcoshS zez

2kT
D − 1G

=
4lDs1 + md

a
sinh2S zez

4kT
D , s8d

where

m= SkT

ze
D2 2«

hD
s9d

is a dimensionless number giving the relative importance of
electro-osmosis compared with electromigration and diffu-
sion in surface conduction, andh is the viscosity. This form
is due to Deryagin and Dukhin[140], who generalized Bik-
erman’s original results[119,120] to account for electro-
osmotic surface conductance(m.0). For Du!1 the double

layer remains in its equilibrium state at constant zeta poten-
tial, but for Du@1 it becomes distorted as surface conduc-
tion draws current lines into the double layer. For a detailed
pedagogical discussion, we refer to Lyklema[29].

It is interesting to note that(at least at large zeta poten-
tials) the Dukhin number is similar to the ratio of the effec-
tive RC time tcszd, away from the point of zero chargesz
Þ0d to the bulk diffusion timeta,

tcszd
ta

=
lD

a
coshS zez

2kT
D , s10d

where we have used Eqs.(3)–(6) with L=a. Moreover, the
usual condition(7) for the validity of the thin double-layer
approximation in quasisteady electrokinetic problems is also
a statement about time scales:tcszd!ta. When this condition
is violated, the usualRC charging dynamics is slowed down
so much by nonlinearity, that bulk diffusion may complicate
the picture. Whether this does in fact occur depends on if the
nonlinearity is strong enough to cause significant concentra-
tion depletion in the bulk for a given geometry and forcing.
Understanding this issue requires going beyond leading order
in asymptotic analysis, which is not trivial.

In spite of extensive work on the asymptotic theory of
diffuse-charge dynamics, difficult open questions remain.
The leading-order thin-double-layer approximation is well
understood in many cases, but higher-order corrections have
been calculated in only a few heroic instances, such as the
asymptotic analysis of diffusiophoresis by Prieveet al. [117].
Moreover, such detailed analysis has mostly(if not exclu-
sively) been done for quasisteady problems. For time-
dependent problems of double-layer charging, it seems that
higher-order terms in uniformly valid matched asymptotic
expansions have never been calculated.

Even the leading-order behavior is poorly understood
when theinducedzeta potential is large enough to violate the
condition(7). In that case, the effective Dukhin number var-
ies with time, as the total zeta potential evolves in time and
space. On the other hand, the Russian literature on nonequi-
librium electrosurface phenomena at large Du mostly per-
tains to highly charged particles in weak fields, where the
constantequilibrium zeta potential is large, but the time-
dependent-induced zeta potential is small.

Below, we begin to explore these issues in the much sim-
pler context of a one-dimensional problem involving
parallel-plate electrodes, which excludes surface conduction
and electro-osmotic flow. We shall see that this requires ex-
tending the standard boundary-layer theory, which deals with
multiple length scales, to account for simultaneous multiple
time scales. Before examining the nonlinear theory, however,
we state the mathematical model and study its exact solution
in the linear limit of small potentials.

III. THE BASIC MATHEMATICAL PROBLEM

As the simplest problem retaining the essential features of
diffuse-charge dynamics, we consider a dilute, completely
dissociatedz:z electrolyte, limited by two parallel, planar,
blocking electrodes atX=±L. We describe the concentrations
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of the charged ions by continuum fieldsC±sX,td which sat-
isfy the Nernst-Planck equations,

]C±

]t
= −

]

]X
S− D

]C±

]X
7 mzeC±

]F

]X
D s11d

(without generation/recombination reactions), whereF is the
electrostatic potential, which describes the Coulomb interac-
tion in a mean-field approximation. For simplicity, we as-
sume that the diffusion coefficients of the two ionic species
are equal to the same constant,D, and obtain the mobility,m,
from the Einstein relation,m=D /kT. The total ionic charge
density re controls the spatial variation of the potentialF
through Poisson’s equation,

− «
]2F

]X2 = re = zesC+ − C−d, s12d

where« is the dielectric permittivity of the solvent, assumed
to be a constant.

As described above, we focus on “ideally polarizable” or
“completely blocking” electrodes without Faradaic pro-
cesses, so the ionic fluxes have to vanish there,

F± = − D
]C±

]X
7

zeD

kBT
C±

]F

]X
= 0, for X = ± L. s13d

The Faradaic current densityJ=zesF+−F−d also vanishes at
the electrodes, although it can be nonzero elsewhere as dif-
fuse charge moves around inside the cell. We also take into
account the intrinsic capacitance of the electrode surface
through a mixed boundary condition for the potential
[25,88,98]. The surface capacitance may represent a Stern
layer of polarized solvent molecules[60] and/or a dielectric
coating on the electrode[63]. If V±std is the external potential
imposed by the external circuit on the electrode atX=±L,
then we assume

F = V± 7 lS
]F

]X
, at X = ± L, s14d

wherelS is an effective thickness for the compact part of the
double layer. For a simple dielectric layer, this is equal to its
actual thickness times the ratio« /«S of dielectric constants of
the solvent,«, and the Stern layer,«S.

In order to study nonlinear effects and avoid imposing a
time scale, we consider the response to a step in voltage(a
suddenly applied dc voltage), rather than the usual case of
weak ac forcing. For timest,0, no voltage is applied, and
we assume no spontaneous charge accumulation at the elec-
trodes. The initial ionic concentrations are uniform,
C±sX,t,0d=C0. For t.0, a voltage difference 2V is ap-
plied between the two electrodes,V±st.0d=±V, and we
solve for the evolution of the concentrations and the poten-
tial. As t→`, the bulk electric field at the center,uEs0,tdu
=]F /]X, decays from its initial value,V/L, to zero, due to
screening by diffuse charge which is transferred from the
right side of the cells0,X,Ld to the lefts−L,X,0d. The
relaxation is complete when the Faradaic current decays to
zero in steady state, from its initial uniform value,JsX,0d
=J0=−sbV/L=−2szed2C0DV/kTL.

IV. LINEAR DYNAMICS

A. Transform solution for arbitrary lD , ls, L

For applied potentials much smaller than the thermal volt-
age,V!kBT/ze, the equations can be linearized, so that the
ionic charge densityre=zesC+−C−d obeys the Debye-
Falkenhagen equation(77),

1

D

]re

]t
<

]2re

]X2 − k2re, s15d

wherek=lD
−1 is the inverse screening length. This equation

can also be written as a conservation law,

]re

]t
= −

]Je

]X
, s16d

in terms of the linearized total ionic electrical current,

Je < − D
]re

]X
− Dk2«

]F

]X
, s17d

which vanishes at the blocking electrodes,X=±L.
To solve the model problem, which involves a step poten-

tial in time, it is convenient to use Laplace transforms, de-
fined by

f̂sSd =E
0

`

dt e−Stfstd. s18d

As resXd=0 for t,0, the Laplace transforms of Eqs.(12)
and (15) are

]2r̂e

]X2 = k2r̂e, s19d

− «
]2F̂

]X2 = r̂e, s20d

where

ksSd2 =
S

D
+ k2. s21d

The general antisymmetric solution to Eq.(19) is

r̂esX,Sd = A sinhskXd s22d

for some constantAsSd, which, substituting into Eq.(20) and
integrating, yields

− «w
]F̂

]X
sX,Sd =

A

k
coshskXd + B, s23d

where the constantBsSd, determined byĴes±L ,Sd=0, is
given by

B = AkcoshskLdsk−2 − k−2d. s24d

Integrating Eq.(23) again and enforcing antisymmetry yields
the Laplace transform of the potential,
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F̂sX,Sd = − A
coshskLd

«k2 S sinhskXd
coshskLd

+
kSX

k2D
D . s25d

The remaining constant,

A =
− k2«VS−1 sechskLd

tanhskLd + lSk +
kSL

k2D
S1 +

lS

L
D s26d

is determined by the Stern-layer boundary condition, Eq.
(14).

B. Long-time exponential relaxation

There is a great deal of information about transients in the
Laplace transform of exact solution to the linear problem.
For times much smaller than the Debye timet!tD=lD

2 /D
(or S@k2D), there is no significant response, so we are
mainly interested in the response at longer times,t@tD (or
S!k2D). There are many ways to see that this is generally
an exponential relaxation dominated by the mixed time scale
discussed above,tc=lDL /D, although several other time
scales allowed by dimensional analysis also play a role.

1. Diffuse charge density at a surface

Let us focus on one quantity, for example, the Laplace
transform of the charge density at the anode,r̂esX=L ,Sd. The
exact formula is

r̂esL,Sd = A sinhskLd, s27d

which is difficult to invert analytically(keep in mind thatk
depends onS). For times much longer than the Debye time,
we consider the limit,S!k2D, in which the Laplace trans-
form takes the much simpler asymptotic form,

r̂esL,Sd ,
KrS

−1

1 + trS
, s28d

where

Kr = −
«Vk2

1 + klS cothskLd
s29d

and

tr =
L

kD
3cothskLdS1 +

3lS

2L
D −

1

2
klS csch2skLd −

1

kL

1 + klS cothskLd
4 .

s30d

Since the Laplace transform of 1−exps−t /tod is S−1/ s1
+Stod, this result clearly shows that the buildup of the
charged screening layer occurs exponentially over a charac-
teristic response time given by Eq.(30), which is of order,
L /kD=lDL /D=tc, for both thin and thick double layers.
Corrections introduce other mixed scales involving the Stern
length, such aslSL /D and lSlD /D, as well as the Debye
time, lD

2 /D.
Note that the same time scale can also be seen in the

linear response to a weak oscillatory potential,V±
=±VReseivtd, which naturally leads to

resL,td , Kr ReS eivt

1 + ivtr
D s31d

for frequencies well below the Debye frequency,v!vD
=D /lD

2 . Similar results for ac response near the point of zero
charge have been obtained by many authors, as cited above.
The characteristic frequency,vc=1/tc<D /lDL, also arises
the context of ac electro-osmotic fluid pumping near micro-
electrodes[1,6], because diffuse-layer charging controls the
time dependence of the effect.

2. Total diffuse charge in an interface

We now show that the same form of long-time exponen-
tial relaxation, with a somewhatdifferentcharacteristic time,
also holds for other quantities, such as the total diffuse
charge near the cathode,

Qstd =E
−L

0

rsX,tddX, s32d

which plays a central role in the nonlinear analysis below. In
the limit of thin double layers, this is simply the total inter-
facial charge(per unit area) of the diffuse part of the double
layer. Here we consider the total diffuse charge near a sur-
face more generally, even when the Debye screening length
is much larger than the electrode separation. In the latter
case, the concept of an “interface” is not well defined, since
the two sides of the cell interact very strongly, but we can
still study the overall separation of diffuse charge caused by
the applied voltage.

Using Eqs.(20) and (23), the Laplace transform of the
total cathodic charge is,

Q̂sSd = Ak−1f1 − coshskLdg. s33d

Once again, this is difficult to invert analytically, so we focus
on the long-time limit,

Q̂sSd ,
KQS−1

1 + tQS
, s34d

for S!k2D, where

KQ =
«Vkf1 − sechskLdg

tanhskLd + klS
s35d

and

tQ =
L

kD
51 +

1

2
sech2skLd +

3lS

2L

tanhskLd + klS

−
sechskLdtanhskLd
2f1 − sechskLdg

−
1

2kL
6 . s36d

In the limit of thin double layers, the same basic time scale,
tc=L /kD=lDL /D, arises as in the case of the surface charge
density. A subtle observation is that the relaxation of the total
interfacial charge, although still exponential, has a somewhat
different time scale as a function ofe=lD /L and d=lS/lD
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(see Fig. 2 below). This apparently new result shows that
charging dynamics has a nontrivial dependence on time and
space, even for very weak potentials.

V. DIMENSIONLESS FORMULATION AND NUMERICAL
SOLUTION

A. Basic equations

In preparation for analysis of the full, nonlinear problem,
we cast it in a dimensionless form usingL as the reference
length scale andtc=lDL /D as the reference time scale, as
motivated by the linear theory. Time and space are then rep-
resented byt=tD /lDL and x=X/L, and the problem is re-
formulated through reduced variables:c=sC++C−d /2C0 for
the local salt concentration,r=sC+−C−d /2C0=re/ s2C0zed
for the charge density, andf=zeF /kBT for the electrostatic
potential. The solution is determined by only three dimen-
sionless parameters:v=zeV/kBT, the ratio of the applied
voltage to the thermal voltage,e=lD /L, the ratio of the De-
bye length to the system size, andd=lS/lD, the ratio of the
Stern length to the Debye length[98].

With these definitions, the dimensionless equations for
−1,x,1 andt.0 are

]c

]t
= e

]

]x
S ]c

]x
+ r

]f

]x
D , s37d

]r

]t
= e

]

]x
S ]r

]x
+ c

]f

]x
D , s38d

− e2]2f

]x2 = r, s39d

with boundary conditions atx= ±1,

]c

]x
+ r

]f

]x
= 0, s40d

]r

]x
+ c

]f

]x
= 0, s41d

v − de
]f

]x
= ±f, s42d

and initial conditions,csx,0d=1, rsx,0d=0, andfsx,0d=vx.
Note that the limit of a negligible screening length,e→0, is
singular because it is impossible to satisfy all the boundary
conditions whene=0. Physically, this corresponds to the
limit of exact charge neutrality,r=0, which is always vio-
lated to some degree at electrochemical interfaces.

The total diffuse charge near the cathode is

qstd =E
−1

0

rsx,tddx, s43d

scaled to 2zeC0L. The dimensionless Faradaic current den-
sity is

jF =
]r

]x
+ c

]f

]x
, s44d

scaled to 2zeC0D /L (Nernst’s diffusion-limited current[98]).

B. Time scales for linear response

The time scale for exponential relaxation of the surface
charge density in the linear theory above, Eq.(30), has the
dimensionless form,

tr =
s1 + 3de/2dcothse−1d − d csch2se−1d/2 − e

1 + d coths«−1d
. s45d

As shown in Fig. 2(a), this formula shows that for a wide
range of diffuse and Stern layer thicknesses, the basic time
scale is always roughly of orderlDL /D, sincetc is of order
1. In the limit of a thin diffuse double layer, the dimension-
less time scale has the form,

tr =
1

1 + d
+ S 3d − 2

2s1 + ddDe + Ose−e−1
d, s46d

with exponentially small errors. In the limit of a thin Stern
layer, the time scale becomes

tr = cothse−1d − e + f5e cothse−1d − 2 cothse−1d

− csch2se−1dg
d

2
+ Osd2d. s47d

For simultaneously thin Stern and diffuse layers, we obtain
the simple result,

tr , 1 − e − d, s48d

which, as in Fig. 2(a), shows that increasing eithere=lD /L
or d=lS/lD tends to reduce the charging time in this limit,
compared to the leading-order value,lDL /D. Putting the
units back, this expression can be written as

FIG. 2. Analytical results for the exponential relaxation time
from the linear theory for weak applied potentialssV!kT/zed. The
time scale for relaxation of the surface diffuse-charge density,tr,
from Eq. (45) is shown in(a), and that of the total interfacial(half-
cell) diffuse charge,tQ, from Eq. (50) in (b). In each case, the
charging time, scaled totc=L /kD=lDL /D, is plotted versus the
dimensionless diffuse-layer thickness,e=lD /L, for different dimen-
sionless Stern-layer thicknesses,d=lS/lD=0,0.1,1,10(solid, dot,
dash, and dot-dash lines, respectively).
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tr ,
lDL

D
−

lD
2

D
−

lSL

D
s49d

for lS!lD!L, which clearly shows the Debye time,lD
2 /D,

appearing only as a small perturbation of the intermediate
time scale,lDL /D, for the relaxation of the cell.

Similar results hold for the relaxation time for the total
half-cell charge, Eq.(36), which has the dimensionless form,

tQ =

1 +
1

2
sech2se−1d +

3de

2

tanhse−1d + d
−

«

2
−

sechse−1dtanhse−1d
2f1 − sechse−1dg

.

s50d

For thin double layers, we obtain the same leading-order
behavior,

tQ ,
1

1 + d
− F 1 − 2d

2s1 + ddGe + Ose−e−1
d, s51d

although the correction term is somewhat different for thick
diffuse layers. For simultaneously thin diffuse and Stern lay-
ers, the dimensionless relaxation time for the total charge
becomes

tQ , 1 −
e

2
− d. s52d

For a detailed summary of how the two time scales,tr andtQ,
depend on the parameters,e and d, see Figs. 2(a) and 2(b),
respectively.

C. Numerical solution

Our dimensionless model problem, stated in Sec. V A, is
straightforward to solve, numerically, using finite differ-
ences, at least ife is not too small.(Ironically, as shown
below, analytical progress is much easier in this singular
limit.) To resolve the boundary layer where the gradient is
large, a variable size mesh is used, along with second-order-
accurate differencing that accounts for the variable grid
sizes. The third-order Adams-Bashforth method is used in
time. The number of the grid points and the ratio of the
smallest to largest grid size are varied depending on the val-
ues ofe andv. The numerical convergence is verified though
multiple runs of different resolutions, and as a result, up to
1024 points are used in calculations for higherv.

To maximize the importance of diffuse charge, we first
consider a rather larger value ofe, even for a micro-
electrochemical system,e=0.05, say forlD=5 nm andL
=0.1 mm. The Stern length is always of molecular dimen-
sions, so we chooselS=5 Å, and thusd=0.1. The time evo-
lutions of the charge and potential are shown in Fig. 3 for
v=0.1 andv=2. At room temperature(andz=1), these volt-
ages correspond toV=2.5 and 25 mV, respectively, which,
when transferred to the diffuse layer after screening, give
maximum electric fields of the order 10 V/mm.

The current,j , and the total cathodic diffuse charge,q, are
plotted versus time,t, in Fig. 4 for applied voltages,v=1,2,3,
and 4. In all cases, the linearization is accurate at early times

st,1d, since the dimensionless voltage across the diffuse
layer remains smalls,1d. Forv=1, the linear approximation
is reasonable for all times, but for somewhat larger voltages,
v=2, 3, and 4, the relative error becomes unacceptable at
long times,t.1. Not only is the limiting value of the total
charge significantly underestimated, but the dynamics also
continues for a longer time, with a qualitatively different
charging profile. The largest applied voltage,v=4, shows
this effect most clearly, as there is a secondary relaxation at a
much larger time scale of ordert=1/e=20. Unlike the other
cases, which display the expected steady increase in charge
of anRC circuit, for vù4 the total charge quickly reaches a
maximum value, after the initialRC charging process, and
then slowly decays toward its limiting value.

We are not aware of any previous theoretical prediction of
such a nonmonotonic charging profile, so it is a major focus
of this work (in Sec. VII and VIII). It is reminiscent of the
Warburg impedance due to bulk diffusion of current-carrying
ions at the time scale,tL=L2/D, or 1/e in our units, in(lin-
ear) response to Faradaic processes, which consume or pro-
duce them at an electrode. Here, however, there are no Fara-
daic processes, so any such bulk diffusion must be related to
the adsorption or desorption of ions in the diffuse part of the
double layer. Moreover, the overrelaxation of the charge den-
sity is part of thenonlinearresponse to a large applied volt-
age, so it will require more sophisticated analytical methods.

VI. WEAKLY NONLINEAR DYNAMICS

A. Asymptotic analysis for thin double layers

The remarkable robustness of the charging time well into
the nonlinear regime(at least for the primary relaxation
phase) can be predicted analytically using matched

FIG. 3. Profiles fort=0 (solid), 0.1 (dot), 0.5 (dash), 1 (dot-
dash), 2 (dot-dot-dot-dash), ` (long dash) of the dimensionless
charge densityrsx,td for dimensionless voltage(a) v=0.1 and(b)
v=2, and of the dimensionless potentialf for (c) v=0.1 and(d)v
=2se=0.05,d=0.1d.
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asymptotic expansions in the singular limit of thin double
layers, e=lD /L!1. Most (if not all) previous studies of
time-dependent problems using asymptotic analysis have
scaled time to the diffusion time,tL=L2/D. In this section,
we will see how the correct charging time scale,tc
=lDL /D, arises systematically from asymptotic matching at
leading order. We also consider, the general case of arbitrary
voltage, v=zeV/kBT, and Stern-layer thickness,d=lS/lD,
with a time-dependent zeta potential(i.e., potential drop over
the diffuse layer). We also study higher-order corrections,
which involve some bulk diffusion at the time scaletL.

As usual, matched asymptotic expansions only produce a
series of “asymptotic” approximations to the solution, in the
sense that higher terms in the expansions vanish more
quickly than the leading terms ase→0, with the other pa-
rameters,v and d, held fixed at arbitrary values. For any
fixed e.0 (no matter how small), there could be
e-dependent restrictions onv and d for various truncated
expansions to produce accurate approximations. We refer to

the regime where such conditions hold as “weakly nonlin-
ear,” as opposed to the “strongly nonlinear” regime, where
the asymptotic expansions break down(described below in
Sec. VIII).

B. Outer and inner expansions

We begin by seeking regular asymptotic expansions(de-
noted by a bar accent) in the bulk “outer” region, e.g.,

csx,td , c̄sx,td = c̄0 + ec̄1 + e2c̄2 + . . .. s53d

Substituting such expansions into Eqs.(37)–(39) and equat-
ing terms order by order yields a hierarchy of partial-
differential equations. At leading order ine, we find that the
bulk concentration does not vary in time,c̄0=1, simply be-
cause the charging time scaletc is much smaller than the
bulk diffusion time scaletL. The leading-order potential is
linear,

f̄0 = j̄0stdx, s54d

where j̄0s0d=v. Since the leading-order bulk concentration is

uniform, j̄0std is the leading-order current density. The
leading-order charge density

r̄2 = −
]2f̄0

]x2 s55d

vanishes because the leading-order potential, Eq.(54), is har-
monic, although at next orderOse3d, a nonzero bulk charge
density,r̄3, arises due to concentration polarization(see be-
low). These arguments justify the usual assumption of bulk
electroneutrality to high accuracy, even during interfacial
charging, as long as the dynamics are “weakly nonlinear.”

The regular outer approximations must be matched with
singular “inner” approximations in the boundary layers. The
problem has the following symmetries about the origin:

5 cs− x,td = csx,td,

rs− x,td = − rsx,td,

fs− x,td = − fsx,td,
6 s56d

so we consider only the boundary layer at the cathode,x
=−1, by transforming the equations to the inner coordinate,
y=sx+1d /e,

e
]c̃

]t
=

]

]y
S ]c̃

]y
+ r̃

]f̃

]y
D , s57d

e
]r̃

]t
=

]

]y
S ]r̃

]y
+ c̃

]f̃

]y
D , s58d

−
]2f̃

]y2 = r̃. s59d

This scaling removes the singular perturbation in Poisson’s
equation, so we can seek regular asymptotic expansions for
the inner approximations(denoted by tilde accents), e.g.,

csx,td , c̃sy,td = c̃0 + ec̃1 + e2c̃2 + . . .. s60d

FIG. 4. (a) The dimensionless current density,jstd (in units of
2zeC0D /L), and (b) the dimensionless total diffuse charge on the
cathodic side of the cell,qstd (in units of 2zeC0L), scaled toqo

=v / s1+dd, versus dimensionless time,t (in units of tc=lDL /D).
Numerical results for dimensionless voltages,v=1 (dot), 2 (dash), 3
(dot-dash), and 4(dot-dot-dot-dash) are compared with linear dy-
namics in the thin double-layer limit:qstd /qo,1−e−s1+ddt and
jstd /v,e−s1+ddt (solid lines) as v ,e→0. The breakdown of linear
theory forvù1 is highlighted in(c), where the data in(b) is replot-
ted for longer times.
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Matching with the bulk approximationsin spaceinvolves the
usual van Dyke conditions, e.g.,

lim
y→`

c̃sy,td , lim
x→−1

c̄sx,td, s61d

which impliesc̃0s` ,td= c̄0s−1,td, c̃1s` ,td= c̄1s−1,td, etc., but
we will also have to make sure that the expansions are prop-
erly synchronizedin time. In particular, we will have to
worry about the appearance of multiple time scales at differ-
ent orders.

Substituting the inner expansions into the rescaled Eqs.
(57)–(59) causes the time-dependent terms to drop out at
leading order. Physically, this quasiequilibrium occurs be-
cause the charging time,tc, is muchlarger than the Debye
time, tD, characteristic of local dynamics in the boundary
layer (at the scale of the Debye length,lD). As a result, we
systematically arrive at classical Gouy-Chapman profiles for
the equilibrium diffuse layer at leading order,

c̃± , e7c̃, c̃0 = coshc̃0, r̃0 = − sinhc̃0, s62d

where the excess voltage relative to the bulk,

c̃sy,td = f̃sy,td − f̄s− 1,td , c̃0 + ec̃1 + . . ., s63d

satisfies the Poisson-Boltzmann equation at leading order,

]2c̃0

]y2 = sinhc̃0. s64d

Note that matching impliesc̃0s` ,td=c̃1s` ,td=¯ =0. The

dimensionless zeta potentialz̃std=c̃s0,td varies as the diffuse
layer charges.

After the first integration we apply matching to the elec-
tric field,

]f̃

]y
s`,td , e

]f̄

]x
s− 1,td → ]f̃0

]y
s`,td = 0, s65d

to obtain

]c̃0

]y
= − 2 sinhsc̃0/2d. s66d

After the second integration,

c̃0sy,td = − 4 tanh−1se−fy+Kstdgd, s67d

we are left with a constant,

Kstd = log cothf− z̃0std/4g, s68d

to be determined fromz̃0std (below) by the Stern-boundary
condition at the cathode surface,y=0, and the coupling to
the bulk region. The offset parameter,Kstd, which also ap-
pears in the concentration and charge density,

c̃0sy,td = 1 + 2csch2fy + Kstdg, s69d

r̃0sy,td = 2 cschfy + Kstdgcothfy + Kstdg, s70d

is quite sensitive to Faradaic reactions[98], but here we fo-
cus only on the effect of compact-layer capacitance.

C. Time-dependent matching

It seems we have reached a paradox: Both the bulk and
the boundary layers are in quasiequilibrium at leading order,
and yet there must be some dynamics, if we have chosen the
proper time scale. The resolution lies in taking a closer look
at asymptotic matching. Physically, we are motivated to con-
sider the dynamics of the total diffuse charge, which has the
scaling,qstd,eq̃std, where

q̃ =E
0

`

r̃sy,tddy, q̃0 + eq̃1 + e2q̃2 + ¯. s71d

Taking a time derivative using Eq.(58) and applying the
no-flux boundary condition(41), we find

dq̃

dt
= lim

y→`

1

e
S ]r̃

]y
+ c̃

]f̃

]y
D , lim

x→−1
S ]r̄

]x
+ c̄

]f̄

]x
D , s72d

where we have applied matching to thederivatives(flux den-
sities). Substituting the inner and outer expansions yields a
hierarchy of matching conditions. At leading order, we have

dq̃0

dt
std = j̄0std, s73d

which shows that we have chosen the right time scale be-
cause this is a balance ofOs1d quantities. Moreover, any
other choice of scaling would lead to a breakdown of
asymptotic matching in the limite→0. (For example, in the
analogous equations(42) and (43) of Ref. [4] for small ac
potentials, the time-dependent term vanishes in this limit,
showing that the proper scaling was not used.) Therefore, the
correct charging time scale, Eq.(2), in the weakly nonlinear
regime follows systematically from time-dependent
asymptotic matching at leading order.

The physical interpretation of Eq.(73) is clear: At leading
order, the boundary layer acts like a capacitor, whose total
charge(per unit area), q̃, changes in response to the transient
Faradaic current density,j̄std, from the bulk. The matching
condition can also be understood physically as a statement of
current continuity across the diffuse layer. Substituting Pois-
son’s Eq.(59) into Eq. (71), integrating, and matching the
electric field using Eq.(65), we see that the left-hand side of
Eq. (73) is simply the leading-order(dimensionless) dis-
placement current density[98–100,102] at the cathode sur-
face,

dq̃0

dt
=

]

]t

]f̃0

]y
s0,td = j̃0std, s74d

so the matching condition simply reads,j̃0std= j̄0std. This
transient displacement current exists in the external circuit,
even if there is no Faradaic current.

In passing, we note an important difference in the present
nonlinear regime between our problem of a pulsed constant
voltage and that of an ac voltage of frequencyv. The exter-
nally imposed ac period introduces a new dimensionless pa-
rameter,ṽ=vtc, which can affect the dominant balances in
the equations. We expect our asymptotic analysis to hold for
ṽ=Os1d, for blocking electrodes, but, if Faradaic processes

BAZANT, THORNTON, AND AJDARI PHYSICAL REVIEW E70, 021506(2004)

021506-12



are allowed, the leading-order response at low ac frequency,
ṽ=Osed, may involve bulk diffusion at the slow time scale,
tL. At high ac frequency,ṽ@1, the fast Debye time scale,
tD, becomes more important. Forṽ=Os1/ed, the double
layer is driven out of equilibrium, with little screening of the
bulk electric field. At even larger voltages,ṽ@1/e, there is
negligible electrochemical transport, although there may be a
frequency-dependent dielectric response(not considered
here). In principle, each of these cases of strong ac forcing
should be treated separately.

D. Leading-order dynamics

Using Eqs.(59), (65), and (66), the integral in Eq.(71)
can be performed at leading order to obtain the Chapman’s
formula for the total diffuse charge,

q̃0 = − 2 sinhsz̃0/2d. s75d

The Stern boundary condition, Eq.(42), then yields

z̃0 + 2d sinhsz̃0/2d = j̄0std − v = C̃0, s76d

whereC̃std=−v−f̄s−1,td,C̃0+eC̃1+. . . is thetotal voltage
across the compact and diffuse layers. Substituting into the
matching condition, Eq.(73), we obtain an ordinary, initial-
value problem, either for the leading-order double-layer volt-
age,

− C̃0sC̃0d
dC̃0

dt
= C̃0 + v, C̃0s0d = 0, s77d

or for the leading-order current density,

C̃0s j̄0 − vd
dj̄0
dt

= − j̄0, j̄0s0d = v, s78d

where C̃0sC̃0d=dq̃0/dC̃0 is the differential capacitance for
the double layer as a function of its total voltage, relative to
the potential of zero charge.

The effective double-layer capacitance is given by

C̃0 =
1

sechsz̃0/2d + d
, s79d

where z̃0 is related toC̃0 by Eq. (76). A similar formula
arises in the classical circuit model of Macdonald[63]. In-
deed, the leading-order charging dynamics from asymptotic
analysis corresponds exactly to the nonlinearRC circuit
shown in Fig. 5. We expect, however, that thead hoccircuit
approximation cannot describe higher-order asymptotic ap-
proximations, where the finite thickness of the double layer
becomes important.

Linearizing for small voltages,C̃0,1/s1+dd, we obtain
the same results as before in the limite→0, now by a com-
pletely different method,

j̄0std , ve−s1+ddt = v + C̃0std, s80d

q̃0std ,
vs1 − e−s1+ddtd

1 + d
. s81d

As shown in Fig. 4 ford=0.1, the linearization describes the
charging dynamics fairly accurately, even for somewhat
large voltagessv<1d, as long asd is not too small. One way
to understand this is that the total differential capacitance
satisfies the uniform bounds,

1

1 + d
= C̃0s0d ø C̃0sC̃0d , C̃0s`d =

1

d
, s82d

in the linear and nonlinear regimes. Moreover, the lineariza-
tion is always accurate at early times(up to t<1 or t<tc)
for any applied voltage, as long as the initial zeta potential
(or diffuse charge) is small. This is also clearly seen in Fig.
4.

The dynamical Eqs.(77) and(78) are first order and sepa-
rable, so their exact solution is easily expressed in integral
form,

C̃0std = j̄0std − v = − F−1std, s83d

where

Fszd =E
0

z C̃0suddu

u + v
. s84d

The integral can be evaluated numerically and the total
charge recovered from the Eqs.(75) and(76). The results in
Fig. 6 show that the leading-order dynamics compares fairly
well with the numerical solution to the full nonlinear prob-
lem for e=0.05 andd=0.1, at least for the decay of the
current density, especially at early timesst<1d. The limiting
value of the total diffuse charge is also approximated much
better than in the linear theory(Fig. 4), due to the nonlinear
differential capacitance, Eq.(79). For large voltagessv.1d,
however, total charge shows some secondary dynamics at
longer time scalesst@1d, which is not fully captured by the
leading-order asymptotic approximation(or the correspond-
ing circuit model). As we shall see below, this can only be

FIG. 5. Sketch of the equivalentRCcircuit for the leading-order
weakly nonlinear approximation: compact-layer and diffuse-layer
capacitors in series with a bulk resistor. Although remarkably ro-
bust, the circuit approximation is violated by higher-order correc-
tions, especially at large voltages.
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understood by considering higher-order terms which violate
the circuit approximation.

For moderately large voltagessv<1d, we can expand
aroundu=v in the integrand of Eq.(84) and obtain a long-
time exponential decay,

j̄0std = v + C̃0std ~ e−t/C̃0svd, s85d

as t→`. This reveals a(dimensionless) characteristic time,

tc=C̃0svd, which is larger than that of the linear regime,tc
=C̃0s0d=1/s1+dd, by at most a factor of1+1/d (=11 in our
numerical examples). Although this factor is non-negligible,
the characteristic time,tc, is still the basic time scale, rather
than tL and tD, which differ from tc by factors ofe, i.e.,
usually two or more orders of magnitude. As the voltage is
increased, however, nonlinearity always becomes important,
and one of its generic effects is to slow down the relaxation
process.

In order to simplify the response function,Fszd, and other
quantities, it is useful to consider the regular limit of thin

Stern layers,d→0 (taken after the singular limit of thin dif-
fuse layers,e→0). In this common physical regime, where
lS!lD!L, the following asymptotic expansions can be de-
rived by iteration[40] from Eqs.(75), (76), and(79):

z̃0 , C̃0 − 2d sinh
C̃0

2
+ d2 sinhC̃0 + . . ., s86d

q̃0 , − 2 sinh
C̃0

2
+ d sinhC̃0 − d2SsinhC̃0 cosh

C̃0

2

+ sinh3C̃0

2
D , s87d

C̃0 , cosh
C̃0

2
− d coshC̃0 + d2ScoshC̃0 cosh

C̃0

2

+
1

2
sinhC̃0 sinh

C̃0

2
+

3

2
sinh2C̃0

2
cosh

C̃0

2
D . s88d

The response function can then be expanded in somewhat
simpler (but still nontrivial) integrals,

Fszd , E
0

z coshsu/2ddu

u + v
− dE

0

z coshsuddx

u + v
+ . . ., s89d

in the limit d→0. One might worry that the correction terms

above for smalld are no longer small at large voltages,C̃0,
but it turns out that once we properly define the “weakly
nonlinear” limit below[via ad!1 in Eq. (131)], the neces-

sary condition,deC̃0/2!1, is automatically satisfied as long
asÎe=Osdd.

E. Uniformly valid approximations

Asymptotic analysis tells us not only the behavior of in-
tegrated quantities like total charge and voltage, but also the
complete spatiotemporal profiles of the charge density and
potential. As usual, uniformly valid approximations(in
space) are constructed by adding the outer and inner approxi-
mations and subtracting the overlaps. Taking advantage of
the symmetries in Eq.(56), we obtain the following leading-
order approximations:

fsx,td , j̄stdx + c̃0S1 + x

e
,tD − c̃0S1 − x

e
,tD , s90d

csx,td , c̃0S1 + x

e
,tD + c̃0S1 − x

e
,tD − 1, s91d

rsx,td , r̃0S1 + x

e
,tD − r̃0S1 − x

e
,tD , s92d

where the boundary-layer contributions are given by Eqs.
(67)–(70) and Eq.(76), which express the effect of the com-
pact layer. The time dependence of the leading-order ap-
proximations is entirely determined by the bulk current den-

FIG. 6. The comparison of the full numerical solution with the
leading-order asymptotic results:(a) j /v, (b) q/qlin (early evolu-
tion), and(c) q/qlin (long time evolution). The full numerical solu-
tion are shown with dotsv=1d, dot-dash[with open squares in(c)]
sv=2d and long dash with open trianglessv=3d. The leading-order
asymptotic results are plotted with dashsv=1d, dot-dot-dot-dash
[with filled squares in(c)] sv=2d and long dash with filled triangles
sv=3d. The curves forv=3 are omitted in(a) and (b) for clarity.
The solid lines show the linear dynamics in the thin double-layer
limit.
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sity, j̄0std, or the double-layer voltage,C̃0std, via Eqs.(83)
and (84).

As shown in Fig. 7, the time-dependent approximations
for f and r are in excellent agreement with our numerical
results well into the nonlinear regimesv=1d, even for a fairly
large boundary-layer thickness,e=0.05. The charge density
clearly shows the expected separation into three regions: a
neutral bulk with two charged boundary layers ofOsed
width. On the other hand, for the same parameters, the
leading-order approximation ofc is not nearly as good. As
expected, the concentration exhibits a homogeneous bulk re-
gion and two inhomogeneous boundary layers ofOsed width,
which are fairly well described, but there are also intermedi-
ate regions of depleted concentration extending far into the
bulk, which are not captured at leading order.

VII. HIGHER-ORDER EFFECTS

A. Neutral-salt adsorption by the double layer

We have seen that each diffuse-charge layer acquires an
excess salt concentration relative to the outer region. At lead-
ing order, however, there is no sign of how the extra ions got
there. This paradox, which also applies to circuit models, is
apparent from symmetry alone, Eq.(56), in that diffuse
charge near the cathode grows by bulk electromigration,
which creates equal and opposite diffuse charge near the an-
ode. In contrast, the excess concentration is the same in both
double layers, so it can only arrive there bydiffusion of
neutral electrolyte from the bulk, which is excluded at lead-
ing order.

The key to understanding higher-order terms, therefore, is
the total excess concentration per unit surface area in(say)

the cathodic diffuse layer,wstd=ew̃std, where

w̃std =E
0

`

fc̃sy,td − c̄0s− 1,tdgdy= w̃0std + ew̃1std + . . .

s93d

is analogous to the scaled total diffuse charge,q̃std. [Note
that c̄0s−1,td=1 in our model problem, but Eq.(93) is more
general.] We proceed with matching in the same manner as
above. Taking a time derivative using Eq.(57) and applying
the no-flux boundary condition(40), we find

dw̃

dt
= lim

y→`

1

e
S ]c̃

]y
+ r̃

]f̃

]y
D , lim

x→−1
S ]c̄

]x
+ r̄

]f̄

]x
D . s94d

Substituting the inner and outer expansions yields another
hierarchy of matching conditions. At leading order, we have

dw̃0

dt̄
std =

1

e

dw̃0

dt
std =

]c̄1

]x
s− 1,td, s95d

which, unlike Eq.(73), involves anew time variable,

t̄ = et =
et

tc
=

t

tL
, s96d

scaled to the bulk diffusion time,tL=L2/D. Physically, this
matching condition simply expresses mass conservation: The
(zeroth order) excess concentration in the diffuse layer varies
in response to the(first-order) diffusive flux from the bulk.

In Eq. (93), the left-hand side is given by the leading-
order inner approximation calculated above. Substituting Eq.
(69) into Eq. (93), integrating, and using Eq.(68) yields

FIG. 7. (a) The potential,(b)
charge density, and(c) concentra-
tion at t=1 for a large dimension-
less voltage,v=1, with e=0.05
andd=0.1. The full numerical so-
lution (dashed lines) is compared
with the leading-order uniformly
valid approximation(dotted lines),
Eqs.(90)–(92). The analytical ap-
proximations are almost indistin-
guishable from the numerical so-
lutions forf andr, except for(c),
which shows errors of a few per-
cent s,ed just outside the double
layers.
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dw̃0

dt
std = 2

d

dt
cothKstd

= 2
d

dt
cosh

z̃0std
2

= −
q̃0std

2

dz̃0std
dt

, s97d

where we have used the identity cosh 2z=−coth log tanhz.

Recall that the leading-order zeta potential,z̃0std, is related

via Eq. (76) to the leading-order bulk current density,j̄0std,
or interfacial voltage,C̃0std, given by Eqs.(83) and (84).

Integrating Eq.(97) and requiringw̃0=0 for z̃0=0, we also
obtain a simple expression for the excess concentration,

w̃0 = 4 sinh2
z̃0

4
, s98d

which also holds for the static Gouy-Chapman solution. Of
course, this is another sign that(at leading order) a thin
double layer stays in quasiequilibrium, even while charging.

Before proceeding to calculate the bulk dynamics, we
comment on the sign of the excess concentration in the dif-
fuse part of the double layer, which corresponds to apositive
adsorption of neutral salt. This is consistent with the Gouy-
Chapman theory, in which counterions are attracted more
than co-ions are expelled upon charging, thereby increasing
the total density of ions and depleting the bulk. In contrast,
Lyklema discusses negative salt adsorption during double-
layer charging(the “Donnan effect”), which increases the
nearby bulk concentration(“salt sieving”) [29]. Our analysis
shows that this can only occur if ions are injected into the
solution at a(nonblocking) surface.

B. Bulk diffusion at two time scales

We now proceed to calculate how the bulk concentration
is depleted in time and space during double-layer charging in
our model problem. The matching condition, Eq.(95), seems
to contradict the analysis above, since it introduces a new
time variable,t̄. However, this is the same time scale for the
first-order(diffusive) dynamics in the bulk,

]c̄1

]t̄
=

1

e

]c̄1

]t
=

]2c̄1

]x2 . s99d

We must solve this equation starting fromc̄1sx,0d=0 with a
time-dependent prescribed flux atx=−1 given by Eqs.(95)
and (97). We also enforce symmetry about the origin, Eq.
(56).

The Laplace transform of the solution is

ĉ̄1sx,sd = −
ÎscoshsxÎsd

sinhsÎsd
E

0

`

e−st̄w̃0st̄/eddt̄

=E
0

`

e−st̄c̄1sx, t̄ddt̄, s100d

wherew̃0std is determined byz̃0std from Eq. (98). The pref-
actor,

Ĝssd =
coshsxÎsd
ÎssinhsÎsd

, s101d

is the Laplace transform ofGst̄d, the Green function for the
diffusion equation, Eq.(99), for a sudden unit flux of ions at
time t̄=0+ injected at the boundary,

Gsx,0d = 0,
]G

]x
s− 1,t̄d = d+st̄d. s102d

The same Green function also arises in the equivalent prob-
lem of an initial unit source adjacent to a reflecting wall,

Gsx,0d = dsx + 1+d,
]G

]x
s− 1,t̄d = 0. s103d

In this form, the Green function can be obtained by inspec-
tion,

Gsx, t̄d =
1

Îpt̄
o

m=−`

`

e−sx − 2m + 1d2/4t̄, s104d

using the method of images.

Since ĉ̄1sx,sd is expressed as a product of two Laplace
transforms, Eq.(100), the inverse is equal to the convolution
of the two original functions,

c̄1sx, t̄d = −E
0

t̄

dt̄8Gsx, t̄8 − t̄d
]w̃0

]t̄
S t̄8

e
D . s105d

This form clearly demonstrates that the boundary forcing
occurs over the fast, charging time,t= t̄ /e, while the response
described by the Green-function kernel occurs over the slow,
diffusion time,t̄. The separation of time scales is apparent in
the equivalent expression,

c̄1sx,td = −E
0

t

dt8Gfx,est8 − tdgtanhS z̃0st8d
2

D j̄0st8d,

s106d

which can be derived from Eq.(105) using Eq.(97). This
form shows explicitly how solution for the current at leading
order, Eq.(83), fully determines the bulk concentration at
first order.

Before further analysis of the exact solution forc1sx,td,
we describe it qualitatively. The bulk concentration at first
order exhibits diffusive relaxation at two different time
scales, t= t̄ /e=Os1d and t̄=et=Os1d, or with units, t
=OslDL /Dd and t=OsL2/Dd, respectively. The former re-
gime is quite subtle and merits further explanation. The ini-
tial double-layer charging process fort̄=Osed proceeds with-
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out any significant changes in concentration at the bulk
length scale,x=Os1d. During this stage, each diffuse-charge
layer acquires anOsed amount of excess concentration, given
by Eq. (109), which has been acquired by a diffusive pro-
cess. At this time scale, a bulk diffusion layer ofOsÎed width
forms near each electrode, so there is anOsÎed depletion of
the neutral-salt concentration in the bulk diffusion layers.
These scaling arguments are confirmed by Fig. 7(c) for v
=1 and e=0.05, where at timet=1 (or t̄=e) the diffusion
layers are roughly of widthÎ2t̄=Î2e<0.3. The formation
and spreading of the diffusion layers are also shown in more
detail in Fig. 8.

In summary, our analysis reveals the following physical
picture of nonlinear electrochemical relaxation(in dimen-
sional terms).

(1) Double-layer charging and bulk depletion. As soon as
the voltage is applied, ions move to screen the electric field
emanating from the electrodes at the time scale,tc=lDL /D.
This stage consists mainly of counterions entering(and to a
lesser extent, co-ions leaving) the double layers by elec-
tromigration from the bulk. Once the induced zeta potential
exceedskT/e, the total ion density in the double layer starts
to increase significantly, due to excess counterions. At first,
the neutral-salt concentration is reduced by a fraction,
ÎlD /L, in a narrow region of width,ÎlDL, just outside the
diffuse-charge layer. These processes continue until the non-
linearRC time, tc coshszez /2kTd, wherez is the steady-state
zeta potential.

(2) Bulk diffusion. At the time scale,L2/D, simple diffu-

sion of neutral-bulk electrolyte slowly fills in the depleted
zones, until a uniform equilibrium state is reached. During
this stage, diffusion layers spread across the cell from the
electrodes, while the double layers remain in quasiequilib-
rium with the evolving bulk concentration.

C. Evolution of the diffusion layers

In the previous section, we derived the time-dependent
outer approximation, Eq.(53), to first order,

c̄sx,td , 1 + ec̄1sx,td, s107d

which displays dynamics at both theRC time and the bulk
diffusion time. The result, Eqs.(104)–(106), is fairly compli-
cated, so in this section we try to gain some simple analytical
insight. In the limite→0, the initial charging process at the
time scalet̄=Osed is instantaneous, and we are left with only
the slow relaxation of the bulk diffusion layers. Explicitly
taking this limit in Eq.(100) with t̄=et fixed,

lim
e→0

c̄1sx, t̄d = − w̃0s`dGsx, t̄d, s108d

we see that the slow-scale evolution of the diffusion layers is
given by the Green function,Gsx, t̄d, with a source of
strength, −w̃0s`d, equal to the leading-order total salt adsorp-

tion. According to Eqs.(76) and (98) with j̄0s`d=0, this is
given by

w̃0s`d = 4 sinh2S f−1svd
4

D , s109d

where

fszd = z + 2d sinhsz/2d, s110d

which reduces to

w̃0s`d = 4 sinh2
v
4

, s111d

in the absence of any compact layerssd=0d.
This simple approximation describes two diffusion layers

created at the electrodes slowly invading the entire cell. At
first, they have simple Gaussian profiles,

c̄sx, t̄d , 1 −
ew̃0s`d
Îpt̄

fe−sx + 1d2/4t̄ + e−sx − 1d2/4t̄g, s112d

for t̄!1, which is qualitatively consistent with the numerical
results in Fig. 7(c). To attempt a quantitative comparison, we
also needt@1 to use Eqs.(108) and(104). As shown in Fig.
9, the approximation is reasonable fort=3 with an error of
roughly e2=0.0025. The two diffusion layers eventually col-
lide, and the concentration slowly approaches a(reduced)
constant value,

c̄sx, t̄d , 1 − ew̃0s`d, s113d

for t̄@1, as expected from the steady-state excess concentra-
tion in the double layers.(This result may be checked by
replacing the sum in Eq.(104) with an integral in the limit
t̄→`.)

FIG. 8. Weakly nonlinear dynamics forv=1, e=0.05, andd
=0.1, showing the effect of bulk diffusion. The concentration from
the full numerical solution is shown in the(a) half cell and in the(b)
diffuse layer fort=0.5 (solid), t=1 (dot), 2 (dash), 4 (dot-dash), 8
(dot-dot-dot-dash), and 20(long dash). Below in (c) and (d) the
individual ion concentrations,c±=C± /C0, are shown att=2, near
the end of the initial charging process.
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D. Bulk concentration polarization

As mentioned above, the bulk charge density remains
very small, r̄=Ose3d, even during double-layer relaxation,
but changes in neutral-bulk concentration affect the potential
at first order. Substituting the outer expansions into Eq.(38)
and collecting terms atOsed, we have

0 =
]

]x
Sc̄0

]f̄1

]x
+ c̄1

]f̄0

]x
D . s114d

This is easily integrated usingc̄0=1 to obtain the first-order
contribution to the bulk electric field,

]f̄1

]x
= j̄1std − j̄0stdc̄1sx,td, s115d

where the second term describes concentration polarization,
i.e., the departure from a harmonic potential, which would be
predicted by Ohm’s law. The first term is a uniform bulk field
(or current) determined by first-order perturbation in double-
layer charge. This follows from the matching condition, Eq.
(72), at first order,

dq̃1

dt
= j̄1std, s116d

whereq̃1std is obtained by solving the inner problem at first
order.

E. Perturbations in double-layer structure

Unfortunately, the first-order inner problem is difficult to
solve analytically because the perturbed concentration pro-
files are no longer in thermal equilibrium during the initial
charging phase. To see this, note that the time derivatives in
Eqs. (57) and (58) contribute nonzero(but known) terms at
first order,

]c̃0

]t
=

]

]y
S ]c̃1

]y
+ r̃0

]f̃1

]y
+ r̃1

]f̃0

]y
D , s117d

]r̃0

]t
=

]

]y
S ]r̃1

]y
+ c̃0

]f̃1

]y
+ c̃1

]f̃0

]y
D , s118d

−
]2f̃1

]y2 = r̃1, s119d

although one still solves a system of linear ordinary differ-
ential equations iny at eacht, since c̃0sy,td, r̃0sy,td, and

f̃0sy,td are known.
The general problem seems daunting, but some progress

can be made at the scale of bulk diffusion,t̄=Os1d or t
=Ose−1d, where the leading-order concentration profiles re-
main in thermal equilibrium, without any explicit time de-
pendence. This will give us some insight into secondary
charge relaxation at the time scale of bulk diffusion. In this
limit, Eqs. (117) and (118) can be integrated to obtain

−
]c̃1

]y
, r̃0sy,`d

]f̃1

]y
+ r̃1

]f̃0

]y
sy,`d, s120d

−
]r̃1

]y
, c̃0sy,`d

]f̃1

]y
+ c̃1

]f̃0

]y
sy,`d, s121d

after applying the usual van Dyke matching conditions. Sub-
stituting from Poisson’s equation,r̃n=−]2f̃n/]y2, at orders
n=0, 1 into Eq.(120), integrating, and applying matching
again, we obtain

c̃1sy, t̄d ,
]f̃0

]y
sy,`d

]f̃1

]y
sy, t̄d + c̄1s− 1,t̄d s122d

for t̄.0 and t= t̄ /e@1. From the previous section, we also
have the leading-order inner concentration,

c̃0sy,`d = c̄0s− 1,t̄d + 1
2Ẽ0sy,`d, s123d

where c̄0s−1,t̄d=1 is the leading-order outer concentration,
and

Ẽ0sy,`d = −
]f̃0

]y
sy,`d = 2 sinh

c̃0sy,`d
2

s124d

is the leading-order inner electric field in steady state. Fi-
nally, we substitute these expressions into Eq.(121) and use
Eq. (118) to obtain a master equation for the first-order inner

electric field, Ẽ1sy, t̄d=−
]f̃1

]y sy, t̄d, at the bulk-diffusion time
scale,

]2Ẽ1

]y2 = S1 +
3

2
Ẽ0

2DẼ1 + c̄1Ẽ0. s125d

This linear equation with a nonconstant coefficient must be

solved subject to the boundary conditions,Ẽ1s` , t̄d=0 and

Ẽ1s0,t̄d=−q̃1st̄d. The perturbation of the total charge,q̃1st̄d is
obtained by another integration of the field to get the first-
order inner potential, while applying the Stern boundary con-
dition.

FIG. 9. Simple approximations of the bulk diffusion layers for
weakly nonlinear charging dynamics withv=1, e=0.05, andd
=0.1. The full numerical solution(solid) is compared with the ap-
proximate first-order expansion at the diffusion time scale, given by
Eqs. (108), (104), and (107). Also, shown is the latter plus the
zero-order inner approximation, Eq.(69), for the diffuse layers
(dashed).
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For our purposes here, it suffices to point out that the
spatial profile of the first-order inner electric field in Eq.
(125) varies with the outer concentration,c̄1s−1,t̄d, at the
slow time scale of bulk diffusion. Notably, this can lead to a
secondary relaxation of the total diffuse charge, in response
to the evolution of the diffusion layers. We observe this slow
relaxation phase in our numerical solutions of the full equa-
tions, especially at large voltages. In particular, it is presum-
ably associated with the nonmonotonic charging profile for
v=4 shown in Fig. 4(c). A detailed analysis of this interest-
ing effect from the setup above would require solving the
first-order inner problem numerically, so we leave it for fu-
ture work.

VIII. STRONGLY NONLINEAR DYNAMICS

A. Steady state and the Dukhin number

We stress again that the asymptotic expansions derived
above are valid in the limit of thin double layers,e→0, with
the other two dimensionless parameters,v (applied voltage)
and d (relative compact-layer capacitance), held constant.
For any fixede.0, there is no guarantee that the approxi-
mation remains accurate as the other parameters are varied.
Having just calculated the bulk concentration to first order in
the regular expansion, Eq.(53), we can now checka poste-
riori under what conditions it remains a good approximation.

A simple check involves the constant bulk concentration,
Eq. (113), after the charging process is completed. The as-
sumption that the first correction is much smaller than the
leading term requiresas;ew̃s`d!1. Linearizing Eq.(110)
for d!1, we can write this condition in a closed form,

4e sinh2S v
4s1 + ddD ! 1. s126d

Putting the units back, we have

assz0d =
4lD

L
sinh2Szez0

4kT
D ! 1, s127d

where z0<V/ s1+dd is the steady-state zeta potential, long
after the dc voltage is applied.

The condition,assz0d!1, for the validity of thesteady-
state asymptotic expansion is identical to that of small
Dukhin number, Dusz0d!1, from Eq.(8) in the limit of no
electro-osmosissm=0d, which may seem surprising since
there is no surface conduction in our one-dimensional model
problem.(Hence, we use the symbolas rather than Du.) The
reason is that in both cases—Dukhin’s problem of electro-
phoresis of highly charged particles in weak applied fields
and ours, of electrode screening in strong applied fields—the
double layer absorbs a significant amount of neutral salt from
the bulk.

Net charge adsorption relative to the point of zero charge
is measured by thetotal zeta potential,

ztot = zeq+ zind, s128d

wherezeq is the uniform equilibrium zeta potential(reflecting
the initial surface charge) and zind is the non-uniform-

induced zeta potential(resulting from diffuse-charge dynam-
ics). In Dukhin’s problem, the former may be large,
Duszeqd.1, but the latter is always small,zind!kT/ze, so
that the charging dynamics are linearized(or ignored). In our
model problem, the situation is reversed: We assumezeq=0
(for simplicity), but we allow for a large applied voltage,
zind<v / s1+dd.kT/ze, in which case the dynamics are non-
linear. In both cases, the steady state is well described by
weakly nonlinear asymptotics as long asassztotd=Dusztotd
!1. When this condition is violated, double-layer charging
and surface conduction may cause significant changes in the
steady-state bulk concentration.

B. Breakdown of weakly nonlinear asymptotics

In general, weakly nonlineardynamicsbreak down at
somewhat smaller voltages, whereztot.kT/e but assztotd
=Dusztotd!1, because neutral-salt adsorption causes atem-
porary, local depletionof bulk concentration exceeding that
of the steady state, after diffusional relaxation. In our model
problem, the maximum change in bulk concentration occurs
just outside the diffuse layers atx=±1, just after the initial
charging process finishes at time scale,t=1 or t̄=e. From Eq.
(112), we have the first two terms of the weakly nonlinear
asymptotic expansion there:

c̄s±1,ed , 1 −Î e

p
w̃0s`d. s129d

At that time, the newly created diffusion layers have spread
to OsÎed width, so the concentration is depleted locally by
Ose /Îed=OsÎed, which is much more than the uniformOsed
depletion remaining after bulk diffusion.

Therefore, in order for the time-dependent correction term
to be uniformly smaller than the leading term, we need

ad ;Î e

p
w̃0s`d =

as

Îpe
! 1. s130d

The relevant dimensionless parameter,

adsztotd = 4Î lD

pL
sinh2Szeztot

4kT
D , s131d

is larger thanassztotd (and the Dukhin number) by a factor of
ÎL /plD in the limit of thin double layers. For weakly non-
linear dynamics to hold, the applied voltage cannot greatly
exceed the thermal voltage,

ztot <
V

1 + d
,

kT

ze
log

L

lD
, s132d

even for very thin double layers,lD!L, due to the loga-
rithm. In comparison, the applied voltage can be twice as
large before the steady-state bulk concentration is signifi-
cantly affected(and surface conduction becomes important
in higher dimensions). This could have interesting conse-
quences for induced-charge electrokinetic phenomena[123]
at moderate applied voltages, wheread.1 but as=Du,1.
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C. Strongly nonlinear asymptotics

When condition(132) is violated, electrochemical relax-
ation becomes much more complicated because double-layer
charging is coupled to bulk diffusion. As long asad,1,
however, the bulk remains quasineutral at all times. This re-
gime of strongly nonlinear dynamics is demonstrated by the
numerical solution in Fig. 10, forv=4, e=0.05, andd=0.1,
in which casead=0.545. In spite of the substantialOs1d
amount of charge transfered from one diffuse layer to the
other, each retains almost exactly the sameOsed width as at
lower voltages, and bulk electroneutrality remains an excel-
lent approximation for all times. The initial charging process
up to t<1 creates a diffusion layer of neutral salt which
relaxes into the bulk at the scalet̄<1 (or t= t̄ /«<20).

In the strongly nonlinear regime, ifas is not too small,
double-layer charging is slowed down so much by nonlinear-
ity that it continues to occur as the bulk diffusion layers
evolve. One way to see this is that the effectiveRC time for
the late stages of charging in Eq.(85) is

tcsvd = Cisvd < cosh
v
2

< 2 sinh2v
4

<
as

2e
, s133d

where we use the leading-order approximation of the differ-
ential capacitance, Eq.(88), for d!1. In units of the bulk
diffusion time, the nonlinear relaxation time ist̄c=etc=as/2.

To make analytical progress, one would consider the joint
limits

e → 0 andv → ` with adsvd . 0 fixed, s134d

and expect the approximations to remain acceptable at some-
what larger voltages, as long asassvd,1. Such analysis is
beyond the scope of this article, but at least we indicate how
the leading order approximation would be calculated.(Going
beyond leading order seems highly nontrivial.)

At leading order in the bulk, we have the usual equations
for a neutral binary electrolyte(with equal ionic diffusivites),

]c̄0

]t̄
=

]2c̄0

]x2 and
]

]x
Sc̄0

]f̄0

]x
D = 0, s135d

with r̄=Ose2d. Integrating the second equation, we obtain a

constant, uniform current density,j̄0std, as before, but the
electric field is modified by concentration polarization,

]f̄0

]x
=

j̄0std
c̄0sx, t̄d

. s136d

The effective boundary conditions come from asymptotic
matching with the diffuse layers as before,

e
dq̃0

dt̄
= j̄0std ande

dw̃0

dt̄
=

]c̄0

]x
s− 1,t̄d, s137d

only now the diffusive flux entering the diffuse layers(sec-
ond equation) appears at leading order. The ionic concentra-
tions retain Gouy-Chapman equilibrium profiles modified
quasistatically by the evolving nearby bulk concentration,

FIG. 10. Strongly nonlinear charging dynamics forv=4 with e=0.05 andd=0.1. The(a) potential,(b) charge density, and(c) concen-
tration are shown in the half cell(top) and in the diffuse layer(bottom) for t=0.5 (solid), 1 (dot), 2 (dash), 4 (dot-dash), 8 (dot-dot-dot-dash),
and 20(long dash).
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q̃0st̄d = − 2Îc̄0s− 1,t̄dsinhS z̃0st̄d
2
D , s138d

w̃0st̄d = 4Îc̄0s− 1,t̄dsinh2S z̃0st̄d
4
D , s139d

where

z̃0st̄d − q̃0st̄dd = C̃0st̄d = − v − c̄0s− 1,t̄d. s140d

It seems that exact solutions are not possible in terms of
elementary functions. The equations are “stiff,” since they
involve a short time scale,t̄=e, for the initial phases of
charging, but at least the spatial boundary layers have been
“integrated out,” which is convenient for numerical solu-
tions.

D. Space charge at very large voltages

We close this section by noting some intriguing, new pos-
sibilities, further into the strongly nonlinear regime. At large
voltages, such thatad.1, it seems atransient space charge
layer should form, since the bulk concentration would be
depleted almost completely near the diffuse layers by the
initial charging process. In steady-state problems of Faradaic
conduction, it is well known that double-layer structure is
altered from its Gouy-Chapman equilibrium profile at a lim-
iting current [135] and may turn into an extended space-
charge layer above a limiting current[136], but here we see
that similar effects may also occur temporarily with large
time-dependent voltages, in the absence of any Faradaic pro-
cesses(at blocking electrodes). At still larger voltages, such
thatas.1, double-layer charging consumes most of the bulk
concentration, presumably leaving the entire bulk region in a
state of “space charge.”

Such situations may seem quite exotic in macroscopic
systems, wheree=lD /L is extremely small, but in microsys-
tems, perhaps they could occur. The mathematical model ne-
glects bulk reactions(e.g., leading to hydrogen bubble for-
mation), nonlinear dielectric properties, electroconvection, or
other effects which may hinder the formation of space charge
in real systems. Nevertheless, the rich nonlinear behavior of
the model merits further mathematical study, as a challeng-
ing problem in time-dependent boundary-layer theory.

IX. BEYOND THE MODEL PROBLEM

We conclude by discussing more general situations, which
contain some other physics, absent in our simple model
problem. For thin double layers, the same methods of
asymptotic analysis could be applied to derive effective
equations in which the double layers are incorporated into
boundary conditions, better suited for analytical or numerical
work. Here, we simply sketch the results and suggest some
other model problems for further study.

A. Two or more dimensions

In the weakly nonlinear regime, wheread,1 for all times
over all double layers, our analysis extends trivially to higher

dimensions, as long as the surface curvature does not intro-
duce another length scale much smaller thanL. In that case,
the double layers are locally “flat,” and the boundary-layer
calculations remain unchanged. Following the same proce-
dure, we find that the bulk concentration is uniform at lead-
ing order,c̄0=1, and the bulk potential,f̄sr ,td, is a harmonic
function,

¹2f̄0 = 0, s141d

subject to a(dimensionless) RC boundary condition at each
electrode surface,

]q̃0

]t
= C̃sf̄0 − fed

]sf̄0 − fed
]t

= n · = f̄0, s142d

wheren is the unit normal pointing into the electrolyte and
fesr ,td is the local electrode potential relative to the solu-
tion. The latter is equal to the local applied voltage plus the
equilibrium zeta potential,

fesr ,td = Vsr ,td + zeqsr d, s143d

which accounts for any preexisting double-layer charge(ne-
glected in our calculations above). A Neumann boundary
condition, n ·= f̄0, is imposed at any inert, nonpolarizable
surface, such as a channel sidewall.

Another complication in two or more dimensions is the
possibility of electro-osmotic flow. The fluid velocity in the
bulk usually satisfies the Stokes equations, which may be
unsteady for high-frequency forcing. In the weakly nonlinear
regime, the classical Helmholtz-Smoluchowski formula
gives the fluid slip in terms of the local zeta potential and
tangential bulk electric field[27–29].

Equations(141) and(142) model the electrolyte as a bulk
Ohmic resistor with a capacitor skin at electrode interfaces.

The linearized version of these equations(with C̃=const) has
been studied extensively, e.g., in the context of metallic col-
loids [103,107], ac electro-osmosis[2–4], ac pumping[6],
and other phenomena of induced-charge electro-osmosis
[123,124]. The nonlinear version, however, has apparently
not been analyzed, even though it may have relevance for
experiments, in which the condition,v!1sV!kT/zed, is
routinely violated.

More significant modifications arise at leading order in
the strongly nonlinear regime(or at higher order in the
weakly nonlinear regime). Ohm’s law breaks down due to
concentration gradients, as the double layers absorb a signifi-
cant amount of neutral salt from the bulk. In two or more
dimensions, the dimensionless leading-order equations for
c̄0sr ,td and f̄0sr ,td in Sec. VIII take the form,

]c̄0

]t̄
= ¹2c̄0, = · sc̄0 = f̄d = 0, s144d

where we scale time to the bulk diffusion time. This assumes
ad,1 so that no transient space charge layers form.

The effective boundary conditions still involve the small
parameter,e, as in one dimension, since the natural scale is
the RC charging time, but there are some new terms in
higher dimensions:
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e
]q̃0

]t̄
= n · sc̄0 = f̄0d − Du=s · J̃s, s145d

e
]w̃0

]t̄
= n · = c̄0 − Du=s · sD̃s=sw̃0d. s146d

The last term in Eq.(145) is the surface divergence of the

(leading-order) dimensionless tangential currentJ̃s in the dif-
fuse layer; the size of this term compared to the normal cur-
rent is governed by a Dukhin number, based on the largest
expected total zeta potential. Similarly, the last term in Eq.
(146) is the surface divergence of the tangential diffusive

flux in the diffuse layer, whereD̃s is a dimensionless surface
diffusivity; again, this term is of order Du smaller than the
normal diffusive flux.

Formulas forJ̃s andD̃s can be derived systematically us-
ing the matched asymptotic expansions, which is beyond the
scope of this paper. The classical results of Bikerman
[119,120] and Deryagin and Dukhin[140] are available for
the case of weak applied voltagesszind!kT/ed and large
equilibrium surface chargesfzeq.kT/e, Duszeqd<1g, and
many Russian authors have studied electrokinetic phenom-
ena in this regime[33,34]. The case of strongly nonlinear
dynamicsfzind.kT/e, adszindd<1g, however, should be re-
visited in more detail to see if any changes arise for strong,
time-dependent applied voltages. We suggest as a basic open
question analyzing the electrochemical response of a metal
cylinder or sphere in a strong, suddenly applied, uniform
background dc field.

Another interesting issue is the stability of our one-
dimensional solution. One should consider small space-
dependent perturbations of the solution at various large volt-
ages, in both the weakly and strongly nonlinear regimes. The
general transient analysis in two or more dimensions with the
same equations and boundary conditions presents an interest-
ing challenge.

B. General electrolytes and Faradaic reactions

Even in one dimension, it would be interesting to extend
our analysis to more general situations involving asymmetric
or multicomponent electrolytes, which undergo Faradaic pro-
cesses at electrode surfaces. Restoring dimensions, the bulk
electrolyte is described by theN ionic concentrations,Ci, i
=1,2, . . . ,N, satisfying mass conservation,

]Ci

]t
= − = ·Fi , s147d

whereFi is the flux density due to diffusion and electromi-
gration, and

Fi = − Di = Ci − mizieCi = F, s148d

as in Eq.(11). For thin double layers, at leading order the
bulk remains neutral(as long asad,1 to avoid space charge

formation), so the potential is determined implicitly by the
condition of electroneutrality,

re = o
i=1

N

zieCi = 0. s149d

These are the standard equations of bulk electrochemistry
[26], but interesting physical effects are contained in the ef-
fective boundary conditions.

Generalizing the total surface charge densityq and excess
surface concentrationw, we defineGi to be the surface con-
centration of speciesi absorbed in the diffuse layer. To be
precise, it is the integral of the leading-order excess concen-
tration relative to the bulk over the inner coordinate, as in
Eqs. (71) and (93). For example,q=zesG+−G−d /2 and w
=sG++G−d /2 for a symmetric binary electrolyte.

Following the procedure above, the boundary conditions
on the leading-order bulk approximation are of the form,

−
]Gi

]t
= n ·Fi + =s ·Fsi + Ri , s150d

whereFsisCi ,Fd is the surface flux density of speciesi in the
double layer[140] andRishCij ,Fd is the reaction-rate density
for any Faradaic processes consuming(or producing) species
i at the surface. The usual assumption forRi involves Arrhen-
ius kinetics, as in the Butler-Volmer equation, but the
Frumkin correction for concentration variations across the
diffuse layer must be taken into account[25,26].

The general system of nonlinear equations is challenging
to solve, even numerically, due to multiple length and time
scales. Boundary-layer theory provides only a partial simpli-
fication by integrating out the smallest length scale. As de-
scribed in Sec. II, various special cases of the effective equa-
tions have been considered in the literature, but much
remains to be done, especially for strongly nonlinear dynam-
ics in large applied voltages. In microelectrochemical or bio-
logical systems, this regime is easily reached, so it merits
additional mathematical study and comparison with experi-
mental data, in part to test the applicability of the Nernst-
Planck equations in microsystems. Another interesting aspect
is the coupling of electrochemical dynamics to fluid flow,
which is finding new applications in microfluidic devices.
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