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The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The
article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics.
The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes,
which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The
Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The “weakly nonlinear” limit of thin double layers is then
analyzed by matched asymptotic expansions in the small paraavekgy/L, where\ is the screening length
andL the electrode separation. At leading order, the system initially behaves liR€aircuit with a response
time of A\pL/D (not )\ZD/D), whereD is the ionic diffusivity, but nonlinearity violates this common picture and
introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse
part of the double layer couples to bulk diffusion at the time sdadéD. In the “strongly nonlinear” regime
(controlled by a dimensionless parameter resembling the Dukhin nyintbisr effect produces bulk concen-
tration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of
more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.
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[. INTRODUCTION diffusion with a diffusivity D across one Debye screening
There is rapidly growing interest in microelectrochemical l€ngth,
or biological systems subject to time-dependent applied volt- K
ages or currents. For example, ac voltages applied at micro- \p = _ekT (1)
electrodes can be used to pump liquid electrolyfesl 1], to 222€°C,

separate or self-assemble colloidal partidi#g-19, and to i i

manipulate biological cells and vesiclg9-21. Conversely, WhereC, is the average solute concentratidnthe Boltz-

oscillating pressure-driven flows can be used to produc&@nn’s constanf] the temperaturee the electronic charge,

frequency-dependent streaming potentials to probe the strugd € the permittivity of the solven{27-29. The Debye

ture of porous medig22-24. time, 7p, is a mgtenal property of the electrolyte, wh|c_h for
A common feature of these diverse phenomena is the dy2dqueous  solutions(\p~1-100 nm, D~10° um?/s) is

namics of diffuse charge in microscopic systems. Although

the macroscopic theory of neutral electrolytes with quasi- /

equilibrium double layers is very well developed in electro- | |

chemistry[25,26 and colloidal sciencg27—29, microscopic | |

double-layer charging at subdiffusive time scales is not as

well understood. Although much progress has been made it -V +V

various disjoint communities, it is not so widely appreciated,

and some open questions remain, especially regarding nor @ ® © )

linear effects. The goals of this paper are, therefore(i)to

review the relevant literature anid) analyze a basic model

problem in considerable depth, highlighting some interest- O

ing, results and directions for further research. @ e &)
To illustrate the physics of diffuse-charge dynamics, con-

sider the simplest possible case sketched in Fig. 1: a dilute @ @ o

z:z electrolyte suddenly subjected to a dc voltag¥, By © e @

parallel-plate blocking electrodes separated hy Raively,

one might assume a uniform bulk electric fiekkV/L, but | : | - X

the effect of the applied voltage is not so trivial. lons migrate L 0 L

in the bulk field and eventually screen it completésjnce

“blocking electrodes” do not support a Faradaic current FIG. 1. Sketch of the model problem. A voltag¥ & suddenly
What is the characteristic time scale of this response? Faipplied to a dilute, symmetric, binary electrolyte between parallel-

charge relaxation, one usually quotes the timgs )\%/D, for  plate blocking electrodes separated ty 2
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rather small, in the range of ns tas . More generally, when Il. HISTORICAL REVIEW
Faradaic reactions occyfor a nonblocking electrodethe
diffuse charge may also vary on the much slower, geometry-
dependent scale for bulk diffusion given by=L2/D, pro- In electrochemistry, the most common theoretical ap-
portional to the square of the electrode separation. proach is to construct an equivalent electrical circuit, whose

These two relaxation timesy, for the charge density and parameters are fit to experimental impedance spectra or
7, for the concentration, are usually presented as the onlpulsed-voltage responses, as recently reviewed by Mac-
ones controlling the evolution of the system, e.g., as in thélonald[37] and Gedde$38]. The basic idea of an equivalent
recent textbooks of Huntd27] (Ch. 8 and Lyklema[29] circuit is apparently due to Kohlraus¢t2] in 1873, and the
(Chs. 4.6¢. Dimensional analysis, however, allows for many first mathematical theory of Kohlrausch’s “polarization ca-
other time scales obtained by combining these two, such ggacitance” was given by Warburg at the end of the nineteenth
the harmonic mean, century[46,47. Warburg argued that ac electrochemical re-

sponse is dominated by pure diffusion of the active species

Te = \;’E: 7‘_DL, (2) and can be described as a bulk resistance in series with a

D frequency-dependent capacitance, which combine to form
the “Warburg impedance.”

Earlier, Helmholtz[43,44 had suggested that the solid-
electrolyte interface acts like a thin capacitor, for which he

pparently coined the term, “double lay€i25]. In 1903,

riger [48] unified Warburg’s bulk impedance with Helm-
holtz’ double-layer capacitor in the first complete ac circuit
model for an electrochemical cell, which forms the basis for
the modern “Randles circuif49]. In this context, the relax-
ation time for charging of the double layers has been known
to depend on the electrode separation, via the bulk resistance,
for at least a century.

The study of diffuse charge in the double layer was initi-
ated in the same year by Gou¥5], who suggested that
excess ionic charge in solution near the electrode could be
viewed as a capacitanc€p=e/\p. He was also the first to
derive Eq.(1) for Ap (obviously with a different notationn
ehis original theory of the diffuse double layer in equilibrium
50,5]. With the availability of Einstein’s relatiofi52] for
he mobility, «=D/KT, at that time, the dc bulk resistance
per unit arepcould have been calculated as

A. Electrical circuit models

proportional to the electrode separatioot squareg Below,

we will show that this is the primary time scale for diffuse-
charge dynamics in electrochemical cells, although 7,
and other time scales involving surface properties also pla
important roles, especially at large voltag@even without
Faradaic processgsThe same applies to highly polarizable
or conducting colloidal particles, wheteis the particle size.

Although the basic charging time,, is familiar in several
scientific communitie$31-34, it is not as widely known as
it should be. Recently, it has been rediscovered agitite
versg frequency of “ac pumping” at patterned-surface mi-
croelectrode$1,6]. As in the past, its theoretical justification
has sparked some discussid3s,3q9 of the applicability of
classical circuit model§37,38 in which 7, arises as theRC
time” of a bulk resistor in series with a double-layer capaci-
tor (see below.

Here, we attempt to unify and modestly extend a larg
body of prior work on diffuse-charge dynamics in the context!
of our model problem, paying special attention to the effectd
which undermine the classical circuit approximation. Going(
beyond most previous mathematical studies, we allow for V. LE, ML
compact-layer capacitance, bulk concentration polarization, Ry=7=——>="2 3
and large voltages outside the linear regime. For the nonlin- J ok eD
ear analysis, the method of matched asymptotic expansionifor a symmetric binary electrolyte of equal mobilities
[39-41 must be adapted for multiple time scales at differentwhereJ is the current density and
orders of the expansion, so the problem also presents an )
opportunity for mathematicians to develop a time-dependent oy = &b - 2(z8°CoD (4)
boundary-layer theory.

A3 kT
We begin in Sec. Il by reviewing some of the relevant. - o .
literature on electrochemical relaxation. In Sec. Ill we state> the bulk conductivity. Therefore, the basic time scale in

the mathematical problem for a suddenly applied dc voItage',Eq' (2) has essentially been contained in circuit models since

and in Sec. IV we analyze the linear response using Laplac@nghly 1910, as the relaxation time,
transforms. In Sec. V we nondimensionalize the problem and ML Cpl sl
describe the numerical solutions used to test our analytical 7e=RCp = D =T =T
approximations. In Sec. VI, we derive uniformly valid

asymptotic expansions in the “weakly nonlinear” limit of althoughz, was not stated explicitly aspL/D for perhaps
thin double layers and discuss the connection with circuianother 50 yearg31].

models. Apparently for the first timgor this problen), in Today, Gouy'’s screening length bears the name of Debye,
Sec. VII we analyze higher-order corrections, and in Secwho rederived it in 1923 as part of his seminal work with
VIII we briefly discuss the “strongly nonlinear” regime at Huckel [53,54 on charge screening in bulk electrolytes, us-
large voltages, where the expansions are no longer valid. Img an equivalent formalism. Debye and Huckel solved for
Sec. IX, we conclude by briefly discussing extensions tahe spherical screening cloud around an ion, and, due to the
higher dimensions, general electrolytes, and Faradaic prdew potentials involved, they linearized the transport equa-
cesses, and pose some open guestions. tions, allowing them to handle general electrolytes. When
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Gouy [51] considered the identical problem of screening One such effect is the “frequency dispersion of capaci-
near a flat, blocking electrode more than a decade earlier, hance” for blocking solid electrodes in contact with liquid
obtained exact solutions to full nonlinear equations for theelectrolytes[65]. Simple capacitance is well established for
equilibrium potential profile in several cases of binary elec-atomically uniform electrodes, such as liquid mercury drops
trolytes,z,/z. =1,2, and 1/2wherez, andz are the cation and single crystals, but polycrystalline, rough, or porous
and anion charge numbers, respectively. electrodes tend to exhibit an additional “constant phase ele-
A few years later, Chapmafb5] independently derived ment,” where the capacitance decays with a power of the
Gouy’s solution for a univalent electrolyteg,=z =1, the frequency (typically 0.7-0.9. Capacitance dispersion has
special case of the “Gouy-Chapman theory” for which theylong been attributed to geometrical surface roughrié8g
are both primarily remembered today. Chapman also gave gaid to introduce resistors of varying lengths, but recent ex-
simple form for the charge-voltage relation of the diffuse-periments implicatgpoorly understoogdatomic-scale inho-
layer capacitor in this case, which, upon differentiation,mogeneitie65,67. Here, we focus on bulk relaxation and
yields a simple formula for the nonlinear differential capaci-ignore such effects, but we pay special attention to the valid-

tance of the diffuse layer, ity of classical circuit models used to interpret experimental
data.
I zel In spite of a century of research, open questions remain
Co(d) = o COSA 517 ) (6)  about the applicability of circuit modekss], and even the

most sophisticated fits to experimental data still suffer from

where ¢ is the voltage across the diffuse layer in thermal@mbiguities[37]. One problem is the somewhat arbitrary dis-
equilibrium. (Here, we include the trivial extension to a gen- tinction between the diffuse layers and the bulk electrolyte,
eral z: z electrolyte) Combining Egs.(3) and (6), we also which in fac_t comprise _a_smgle, continuous region. Even
obtain the basic relaxation time,, in Eq.(2) multiplied by a ~ @ccepting this partition, it is clear that the nonuniform evo-
potential-dependent factor in the usual case of nonzero equliutlon of ionic concentrations in bo.th regions cannot be fully
librium zeta potentialin the absence of an applied voltage captured by homogeneous circuit elemef@8]. Another
This factor may be neglected in the Debye-Hiickel limit of problem is the further partitioning _of the double' layer into
small potentials{ <kT/ze but it becomes important at large tWo (or morg poorly defined regions at atomic lengths
potentials and generally slows down the final stages ofcales, where macroscopic continuum theo(ees., for di-
double-layer charging. electric respongeare of questionable validit}69].

More sophisticated models of the double layer were pro-
posed by many subsequent authf@,57] and incorporated
into ac circuit models for electrochemical ce|®5,58,59.
Naturally, the original ideas of Helmholtz and Gouy were An alternative theoretical approach, pursued below, is to
eventually combined into a coherent whole. In 1924, Sterrsolve the time-dependent Nernst-Planck equatigiis-72
[60] suggested decomposing the double layer into a “comfor ionic transport across the entire celbutside any
pact” (Helmholt part within a molecular distance of the molecular-scale compact laygr@ithout distinguishing be-
surface and a “diffuse{Gouy) part extending into the solu- tween the diffuse-charge layers and the quasineutral bulk.
tion at the scale of the screening length. Physically, the comBecause this “phenomenological32] approach requires
pact layer is intended to describe iotat the outer Helm- solving Poisson’s equation for the mean-field electrostatic
holtz plang whose solvation molecules are in contact with potential (self-consistently generated by the continuum
the surface, although specifically adsorbed ighemselves charge densify down to microscopic (and sometimes
in contact with the surfagemay also be include@1]. Re- atomig length scales, it lacks the thermodynamic justifica-
gardless of the precise microscopic picture, however, Stertion of traditional macroscopic theories based on bulk elec-
introduced the compact layer as an intrinsic surface capactroneutrality and electrochemical potentidf6]. Neverthe-
tance, which cuts off the divergent capacitance of the diffuséess, it addresses time-dependent charge-relaxation
layer, Eq.(6), at large zeta potentials. phenomena, which do occur in real systems, with feagr

Using this model of two capacitors in series and neglecthoc assumptions than circuit models, and thus may be con-
ing specific adsorption, Grahanié2] applied the Gouy- sidered closer to first principles. The use of the Nernst-
Chapman theory for the diffuse part and inferred the nonlinPlanck equations at scales smaller than the screening length
ear differential capacitance of the compact part from higbut still larger than atomic dimensionis also supported by
famous experiments on electrified liquid-mercury drops.the success of the Gouy-Chapman theory in predicting the
Macdonald[63] then developed a mathematical model for diffuse-layer capacitance in a number of experimental sys-
double layers at metal electrodes by viewing the compactems(e.g., Refs[62,63), because the theory is based on the
layer as a parallel-plate capacitor, as we do below, althoughkteady-state Nernst-Planck equations for thermal equilib-
he also allowed its thickness and capacitance to vary due toum. The main difficulty in working with the Nernst-Planck
electrostriction and dielectric saturati¢64]. The reader is equations, aside from mathematical complexity, is perhaps in
referred to various recent revieW87,38,59 to learn how formulating appropriate boundary conditions at the electrode
other effects neglected below, such as specific adsorption arslirface, just outside any compact layers.

Faradaic processes for nonblocking electrodes, have been in- Although the response to a suddenly applied dc voltage
cluded empirically in modern circuit models. has been considered by a few authors in the lifié2)74,76

B. Microscopic transport models
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and nonlineaf32,79 regimes, as we also do below, much =\pL/D (in this form) as governing the relaxation of an
more analysis has been reported for the case of weak adectrochemical cell. It was also derived independently by
forcing, where the equations are linearized and the time deKornyshev and Vorontynts€\74,75 in the Russian literature
pendence is assumed to be sinusoidal. These simplificatiors solid electrolytes with one mobile ionic specj8g]. With

are made mainly for analytical convenience, although theytskovich[88], these authors also modeled the compact-layer
have direct relevance for the interpretation of impedanceapacitance via a mixed Dirichlet-Neumann condition on the
spectra. An early analysis of this type was due to FE36),  Nernst-Planck equations. This classical boundary condition
who considered the response of a semi-infinite electrolyte t 5], also used below, introduces another length sealdhe

an oscillating charge density appligd at a electrode surfac ffective width of the Stern layer, which also affects the time
Ferry's treatment is formally equivalent to the classmalsca“es for electrochemical relaxation.

theory of dielectric dispersion in bulk electrolyt§g7,7§. Other important surface properties have also been in-

Naturally, in both cases the same fime scalg=Ap/D, 4o in mathematical analyses of ac response. For ex-
arises, and the relaxation of the double layer has no depe%-m le, several recent studies of blocking electrodes have in-
dence on the macroscopic geometry. pie, Y

Ferry’s analysis of a single electrode is consistent with thé:IUded the effect of a nonzero equilibrium zeta potential

common intuifion that double-layer charging should be a@Wway from the point of zero charggs8,89-91, building on

purely microscopic process, but one might wonder how thdn€ work of Delacey and Whitf92]. A greater complication
electrode could draw a charge “from infinity” when an infi- IS t0 include Faradaic processes at nonblocking electrodes
nite electrolyte has infinite resistance. Indeed, as emphasizédrough boundary conditions of the Butler-Volmer type
by Buck[76] and Macdonaldi31], and confirmed by detailed [26,56,51, as suggested by Levid®3] and Frumkin[94].
comparisons with experimental impedance spectra, Ferry’$his approach has been followed in various analyses of ac
analysis is fundamentally flawed, starting from the boundaryesponse around base states of zg8®,75,88,95-9[ and
conditions: It is not possible to control the microscopic nonzero 98,99 steady Faradaic current. Numerical solutions
charge density at an electrode surface and neglect its coof the time-dependent Nernst-Planck equations have also
pling to bulk transport processes; instead, one imposes laeen developed for ac response and more general situations
voltage relative to another electrode and observes the resul92,100,10], following the work of Cohen and Cooley
ing current(or vice versy while the surface charge density [102].
evolves self-consistently.

Buck[76] eventually corrected Ferry’s analysis to account C. Colloids and microfluidic systems
for the missing “IR drop” across two electrodes, which im-

poses the initial surface charge density, alternatively, ut also around colloidal particles and in microfluidic sys-
voltage. Nevertheless, the physical picture of a double-laye|b al par . Idic sy
tems, where the coupling with fluid flow results in time-

responding locally to “charge injection,” independent of bulk q i | Kinetic oh Thi .
transport processes, persists to the present day. For exampfigPendent, nonlinear electrokinetic phenomena. This review

recent textbooks on colloidal sciengdunter [27], p. 408: unifies some of the fairly disjoint literatures on diffuse-
Lyklema[29], p. 4.78 present a slightly different version of charge dynamics in these areas, with the older literature in
Ferry's analysis(attributed to O’Brien as the canonical electrochemistry discussed above. Compared to the latter,
problem of “double-layer relaxation:” the response of a semi-more sophisticated mathematical analyses are often done in
infinite electrolyte to a suddenly imposed, constant surfac€olloidal science and electromicrofluidics, starting from the
charge density. This gives some insight into high-frequencyNernst-Planck equations for ion transport and the Navier-
dielectric dispersion of nonpolarizable colloidthe usual Stokes equations for fluid mechanics in two or three dimen-
cas@, but it is not relevant for polarizable particles and elec-sions. On the other hand, with the notable exception of the
trodes. Three decades after Buck and Macdonald, it is wortlkrainian school[29,34,103,104 less attention is paid to
re-emphasizing the fundamental coupling of double-layesurface properties, and simple boundary conditions are usu-
charging of bulk transport in finite, polarizable systems.  ally assumedconstant zeta potential and complete blocking
The mathematical theory of ac response for a finite, two-of ions), which exclude diffuse-charge dynamics.
electrode system began with Jaffé’s analysis for semiconduc- This might explain why the material time scatg is em-
tors [79,80 and was extended to liquid electrolytes by phasized as the primary one for double-layer relaxation
Chang and Jaffg81]. A number of restrictive assumptions in around colloidal particle§27-29, although the mixed time
these studies, such as a uniform electric field, were relaxesicaler,=(L/\p) 7y has come to be recognized as controlling
by Macdonald82] for semiconductors and electrolytes, and bulk-field screening by electrod¢68,89—91. This thinking
independently by Friauf83] for ionic crystals. These au- can be traced back to the seminal work of Debye and Falk-
thors, who gave complete mathematical solutions, also alenhager{77,78 on dielectric dispersion in bulk electrolytes
lowed for bulk generation/recombination reactions, whichmentioned above. In that context, when a background field
are crucial for electrons and holes in semiconductors. Subsé, is applied to an electrolyte, the relevant geometrical
qguent authors mostly neglected bulk reactions in studies dength is the size of the screening cloud around an ion,
liquid [31,76,84—8pand solid[ 74,87 electrolytes, while fo- =\p, over which a voltageE,\p, is effectively applied. The
cusing on other effects, such as arbitrary ionic valences anglevantRC time for the polarization of the screening cloud
the compact layer. is then 7.=\pAp/D=1p. The possible role of geometry is
Although it is implicit in earlier work, Macdonald31] masked by the presence of only one relevant length scale,
clearly identified the geometry-dependent time scale \p.

Diffuse-charge dynamics occur not only near electrodes,
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For colloidal particles, which are usually much larger thanthe theory of surface conduction in the double layer, and
the double-layer thickness, the second time scgkea?/D, Overbeek122] calculated in detail the effect of nonequilib-
for bulk diffusion around a particle of radiug, becomes rium double-layer polarization on electrophoresis.
important, especially in strong fields. If there is significant  Diffuse-charge dynamics has begun to be exploited in mi-
surface conduction, or the particle is conducting, tREC"  crofluidic devices, albeit without the benefit of the prior lit-
time scaler;=\pa/D can also become important. In general, erature in electrochemistry and colloidal science discussed
double-layer relaxation is thus sensitive to the size and shapgyove. In a series of recent papers, Ramos and collaborators
of the particle. Although it is largely unknowgand rarely  paye predicted and observed “ac electro-osmosis” at a pair of
cited in the West, many effects involving nonuniform pocying microelectrodegl—5|. Their simple explanation of
D s St s oblelayer chnamics1, Suppored by & mathenaica
face phenomenal33], as recéntly rgviewed by Dukhin anaIyS|s_0f ac response in two dlmensuin}_s is _S|m|Iar to
[34.104 ' that of Simonov and Shllov for a metal_partlcle_ in an ac field

oo [107], and the resulting electro-osmotic flow is of the type

The colloidal analog of our model problem involving a . X
blocking electrochemical cell is that of an ideally polariz- _descnbed by Gamanoet al. for metal particleg108]. An

able, metal particle in a suddenly applied background electrifPortant difference, however, is that ac electro-osmosis oc-
field. Following a nearly instantaneous electronic relaxatiorfUrs at fixed microelectrodes, whose potentials are controlled
making metal equipotential, a slower ionic relaxation arouncgXtérnally, as opposed to free colloidal particles. Ajdaii
the particle, mostly in the double layer, screens the metal’§aS proposed a similar means of pumping liquids using ac
surface charge. For a spherical particle, the response to ti¥®!tages applied at an array of microelectrodes, where bro-
applied field is fully described by the induced dipole mo-Kken symmetries in surface geometry or chemistry generally
ment, which contains contributions from both electronic and€ad to net pumping past the array, as observed in subsequent
ionic relaxationg33]. ex_pe_nments[?_—lq. These are all examples (_)f the general
This situation has received much less attention than th&rinciple of “induced-charge electro-osmosi§123,124,
usual case of nonconducting particles of fixed surface charg&here diffuse-charge dynamics at polarizable surfaoes
density, but it has an interesting history. The nonuniformnecessarily electrodpare used to drive microflows with ac
polarization of the double layer for a metal particle was de-oF dc forcing. Clearly, the full range of possible microfluidic
scribed by LevicH{105], using Helmholtz's capacitor model. applications of time-dependent nonlinear electrokinetics has
Simonov and Shilov[106,107 later considered diffuse Y€t to be explored.
charge and showed that the double-layer contribution to the
induced dipole moment arises at the time scake\pa/D,
as bulk conduction transfers charge from the part of the
double-layer facing away from the field to the part facing All of the analytical studies cited above that go beyond
toward the field. The two hemispheres may be viewed a§near responséand most that do npare based on the thin-
capacitors coupled through a continuous bulk resigto7],  double-layer approximationyp <L. In this limit, the bulk
as in theRC circuit model of dc electrochemical cells de- €lectrolyte remains quasineutral, and the double layer re-
scribed above. The charging process continues until the rénains in thermal quasiequilibrium, even with time-
distribution of diffuse-charge completely eliminates the nor-dependent forcingslower thanrp) [26-29,34. The same
mal component of the electric field responsible for chargindimit also justifies the general notion of circuit models for the
the double layer. diffuse part of the double layer and, in the absence of con-
Diffuse-charge dynamics is important in the context ofcentration gradients, the neutral bulk region.
colloids because it affects electrokinetic phenomena. In the As shown by Grafov and Chernenkd25,12§ in the So-
metal-sphere example, the remaining tangential componeiet Union, and by Newmafil27] and Macgillivray[128] in
of the field interacts with the nonuniform induced diffuse the United States, the thin double-layer approximation for
charge (and zeta potentialto cause nonlinear electro- €lectrochemical cells can be given “firrtjut not necessarily
osmotic flows[103,108, which cause hydrodynamic interac- ‘rigorous”) mathematical justification by the method of
tions between colloidal particles. Although these flows havenatched asymptotic expansiof#9-41 in the small param-
little effect on the electrophoresis of charged polarizable par€ter e=Ap/L. For steady Faradaic conduction, the usual
ticles in uniform dc field§109,11Q, they significantly affect leading-order approximation involves a neutral bulk with
dielectrophoresis in nonuniform ac field$11,113, where charged boundary layers 6f(e) dimensionless width, which
the time dependence of double-layer relaxation also plays af@s since been established rigorously in a number of studies
important role. by mathematician§129-134. The standard asymptotic ap-
These developments followed from studies of Dukhin,proximation breaks down, however, near Nernst's diffusion-
Deryagin, and collaboratof83,34,113,11%0on the effects of  limited current, where the concentration at the cathode van-
surface conduction and concentration gradients on electricighes. At the limiting curren135], the boundary layer
polarization and electro-osmotic flows around highly chargedexpands tdD(e*?) width, while at still larger current§136],
nonconducting particles, which was also extended to polara layer of “space charge” extends out@¢l) distances into
izable particle§103]. (Similar ideas were also pursued later the bulk region, although the effect of realistic boundary con-
in the Western literature, with some new resultsditions (Faradaic processes, compact layer,)atemains to
[27,115-118) Earlier still, Bikerman[119-12] presented be studied in these exotic regimes. Matched asymptotic ex-

D. The limit of thin double layers
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pansions are also beginning to be used for time-dependetdyer remains in its equilibrium state at constant zeta poten-

electrochemical problems with Faradaic procesf8399 tial, but for Du>1 it becomes distorted as surface conduc-

below the limiting current. tion draws current lines into the double layer. For a detailed
Perhaps because it originated in fluid mechafdd§, the  pedagogical discussion, we refer to Lyklefi28)].

method of matched asymptotic expansions has been used It is interesting to note thaat least at large zeta poten-

extensively in colloidal science and microfluidics tials) the Dukhin number is similar to the ratio of the effec-

[4,34,114-118,137,138 albeit with varying degrees of tive RC time 7.({), away from the point of zero chargé

mathematical rigor. In any case, the advantages of the tech«0) to the bulk diffusion timer,,

nique are ta(i) justify the assumption of equilibrium struc-

ture for the double layergat leading order regardless of () - Ao Cosl,(ﬂ) (10)

transport processes in the neutral bulk, &g view the Ta 2kT)’

double layers as infinitely thin at the bulk length scale, which . _
is particularly useful in multidimensional problems. For stat—Where we have used Eg&)—(6) with L=a. Moreover, the

ics or dynamics at the bulk diffusion time, it is usually pos- usual qond@tion_(?) for t.he validity of th_e thin doubIe—Ia_yer
sible to construct uniformly valid approximations by adding approximation in qgassteady electrokinetic prpblems_ 1S also
the inner and outer solutions and subtracting the overlap. a statement about time scaleg{) < 7,. When this condition

The thin double layer approximation is “asymptotic” as is violated, the usuaRC charging dynamics is slowed down

e— 0, which means that the ratio of the approximation to theS® Much by nonlinearity, that bulk diffusion may complicate

exact solution approaches unity for sufficiently smaklvith the pictur_e. Whether this does in fact oceur q_epends on if the
all other parameters held fixed. For any fixed 0 (no mat- nonlinearity is strong enough to cause significant concentra-
ter how small, however, the approximation breaks down attion depletion in the bulk for a given geometry and forcing.

sufficiently large voltages. The general criterion Understanding this issue requires going beyond leading order
in asymptotic analysis, which is not trivial.

b zel In spite of extensive work on the asymptotic theory of
5 oS <1 (") diffuse-charge dynamics, difficult open questions remain.
The leading-order thin-double-layer approximation is well

is often quoted for the validity of Smoluchowski's formula understood in many cases, but higher-order corrections have
for the electrophoretic mobility of a thin-double-layer par- been calculated in only a few heroic instances, such as the
ticle [27], as justified by numerical calculatiofs39]. Thisis  asymptotic analysis of diffusiophoresis by Priesteal.[117].
related to Dukhin’s seminal work on double-layer distortion Moreover, such detailed analysis has mostfynot exclu-
around a spherical particlg34,114,138 In the case of sjvely) been done for quasisteady problems. For time-
highly charged particles{>kT/zg the “Dukhin number” dependent problems of double-layer charging, it seems that
Du (which he called Rel') controls corrections to the thin- higher-order terms in uniformly valid matched asymptotic
double-layer limit, Du=0. expansions have never been calculated.

The Dukhin number is defined as the ratio of the double- Even the leading-order behavior is poorly understood
layer surface conductivitys to the bulk conductivityo, in - when theinducedzeta potential is large enough to violate the
Eq. (4) per geometrical lengtha: Du=o¢/ opa. Although its  condition(7). In that case, the effective Dukhin number var-
effect on electrophoresis was explored in detail by Dukhinjes with time, as the total zeta potential evolves in time and
the same dimensionless group was defined a few decadgpace. On the other hand, the Russian literature on nonequi-
earlier by Bikerman121], who also realized that it would |ibrium electrosurface phenomena at large Du mostly per-
play a fundamental role in electrokinetic phenomena. In &ains to highly charged particles in weak fields, where the
symmetric binary electrolyte with equal diffusivities, the constantequilibrium zeta potential is large, but the time-

2KT

Dukhin number can be put in the simple form, dependent-induced zeta potential is small.
Inp(1 +m) 26l Below, we begin to explo're the§e issues in the much sim-
= — -1 pler context of a one-dimensional problem involving
2kT parallel-plate electrodes, which excludes surface conduction

KT (8)  tending the standard boundary-layer theory, which deals with

CAp(l+m) hz< zeg) and electro-osmotic flow. We shall see that this requires ex-
multiple length scales, to account for simultaneous multiple

where time scales. Before examining the nonlinear theory, however,
5 we state the mathematical model and study its exact solution
- (k_T> 2e 9) in the linear limit of small potentials.
ze/ 7D

is a dimensionless number giving the relative importance of
electro-osmosis compared with electromigration and diffu-
sion in surface conduction, anglis the viscosity. This form As the simplest problem retaining the essential features of
is due to Deryagin and Dukhifi40], who generalized Bik- diffuse-charge dynamics, we consider a dilute, completely
erman’s original result§4119,12Q to account for electro- dissociatedz:z electrolyte, limited by two parallel, planar,
osmotic surface conductan¢e>0). For Du<1 the double blocking electrodes aX=+L. We describe the concentrations

Ill. THE BASIC MATHEMATICAL PROBLEM
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of the charged ions by continuum fiel@ (X, 7) which sat- IV. LINEAR DYNAMICS

isfy the Nernst-Planck equations, A. Transform solution for arbitrary Ap, A, L

9Cs _ _ i(_ Df9_C¢ . zeQ@> (11) For applied potentials much smaller than the thermal volt-
aT aX aX # = X age,V<kgT/zeg the equations can be linearized, so that the

ionic charge densityp,=z6(C,—C_.) obeys the Debye-
(without generation/recombination reactignshere® is the Falkenhaggn equatiqyﬁ”)%, o ) 4 4

electrostatic potential, which describes the Coulomb interac-
tion in a mean-field approximation. For simplicity, we as- 1dpe  Fpe
sume that the diffusion coefficients of the two ionic species D or = W
are equal to the same constddt,and obtain the mobilityy,
from the Einstein relationu=D/kT. The total ionic charge where x=\g' is the inverse screening length. This equation
density p, controls the spatial variation of the potentd can also be written as a conservation law,
through Poisson’s equation,

Ipe e

PD —= (16)

—e 2 = po=26C, - C.), (12) ar X

- K%pe, (15)

) ) ) o in terms of the linearized total ionic electrical current,
wheree is the dielectric permittivity of the solvent, assumed

to be a constant. Ipe , 0P
As described above, we focus on “ideally polarizable” or Je=- D(;_X ~Dx &’ 17)
“completely blocking” electrodes without Faradaic pro-
cesses, so the ionic fluxes have to vanish there, which vanishes at the blocking electrods; L.
To solve the model problem, which involves a step poten-
F.=- 9Cs _ @Q@ =0, forx=+L. (13 Ualin time, itis convenient to use Laplace transforms, de-
- X kgT ~oX fined by

The Faradaic current densify=zgF,—F_) also vanishes at . %
the electrodes, although it can be nonzero elsewhere as dif- f(S) =f dr e (7). (18
fuse charge moves around inside the cell. We also take into 0
account the intrinsic capacitance of the electrode surfac@s , (X)=0 for <0, the Laplace transforms of Eqel2)
through a mixed boundary condition for the potential 3nq(15) are
[25,88,98. The surface capacitance may represent a Stern
layer of polarized solvent molecul¢60] and/or a dielectric e 9n
coating on the electrod@3]. If V.(t) is the external potential e =Kpe, (19
imposed by the external circuit on the electrodeXat+L,
then we assume -
FD
_ oD &5 = Pes (20
q>:vi+>\3&, atX= L, (14) X
where
wherelgis an effective thickness for the compact part of the
double layer. For a simple dielectric layer, this is equal to its 5 5
actual thickness times the ratideg of dielectric constants of k(9= p K (21)
the solventg, and the Stern layegg,
In order to study nonlinear effects and avoid imposing aThe general antisymmetric solution to E49) is

time scale, we consider the response to a step in voliage R ]
suddenly applied dc voltagerather than the usual case of pe(X,S) = Asinh(kX) (22)
weak ac forcing. For times<0, no voltage is applled, and far some constanA(S), which, substituting into Eq20) and
we assume no spontaneous charge accumulation at the elec- . ;
trodes. The initial ionic concentrations are uniform, ntegrating, yields
C.(X,7<0)=C,. For 7>0, a voltage difference\2is ap- Pes A
plied between the two electrode¥,(7>0)=%V, and we - g,— (X, =— coshkX) + B, (23
solve for the evolution of the concentrations and the poten- X k
tial. As 7— o, the bulk electric field at the centdE(0,7)] _ - .
=0®/JX, decays from its initial valuey/L, to zero, due to vv_here the constanB(S), determined byJ(:L,9=0, is
screening by diffuse charge which is transferred from thediven by
right siQe qf the cell0<X<L) to the Ieft(TL<X<O). The B = Ak cosHkL)(x 2 - k°2). (24)
relaxation is complete when the Faradaic current decays to
zero in steady state, from its initial uniform valu#X, 0) Integrating Eq(23) again and enforcing antisymmetry yields
=Jo=—0pV/L=-2(z8?C,DV/KTL. the Laplace transform of the potential,
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- coshkL) [ sinhkX) kSX eer
X9 =-A ek? (cosr(kL) * K2D>' (25 pe(Ls7) ~ K, Re(l +inp) (3Y)
The remaining constant, for frequencies well below the Debye frequeney< wD
5 1 :D/)\%. Similar results for ac response near the point of zero
A= —KeVS™ sectiklL) (26)  charge have been obtained by many authors, as cited above.
tanh(kL) + Ak + @.(1 )\_s> The characteristic frequency.=1/7,~D/\pL, also arises
K2 L the context of ac electro-osmotic fluid pumping near micro-

] ] - electrodeq1,6], because diffuse-layer charging controls the
is determined by the Stern-layer boundary condition, Ediime dependence of the effect.

(14).

B. Long-time exponential relaxation 2. Total diffuse charge in an interface
We now show that the same form of long-time exponen-
| relaxation, with a somewhalifferentcharacteristic time,
also holds for other quantities, such as the total diffuse
echarge near the cathode,

There is a great deal of information about transients in thtsEia
Laplace transform of exact solution to the linear problem.
For times much smaller than the Debye tim& TD=)\%/D
(or S> «?D), there is no significant response, so we ar
mainly interested in the response at longer times,, (or 0
S< «?D). There are many ways to see that this is generally QM) :f p(X,t)dX, (32
an exponential relaxation dominated by the mixed time scale -t
discussed abover.=\pL/D, although several other time which plays a central role in the nonlinear analysis below. In
scales allowed by dimensional analysis also play a role.  the limit of thin double layers, this is simply the total inter-
facial charggper unit areaof the diffuse part of the double
. layer. Here we consider the total diffuse charge near a sur-

Let us focus on one quantity, for example, the Laplaceace more generally, even when the Debye screening length
transform of the charge density at the angeleX=L,S). The  js much larger than the electrode separation. In the latter
exact formula is case, the concept of an “interface” is not well defined, since

- o the two sides of the cell interact very strongly, but we can
pelL,S) = AsinhlkL), (27) still study the overall separation of diffuse charge caused by
which is difficult to invert analyticallykeep in mind thak  the applied voltage.
depends or$). For times much longer than the Debye time, Using Eqgs.(20) and (23), the Laplace transform of the
we consider the limitS< «?D, in which the Laplace trans- total cathodic charge is,
form takes the much simpler asymptotic form,

1. Diffuse charge density at a surface

Q(S) = Ak 1 - cosfkL)]. (33)
~ KS™ . : :
pe(L,S) ~ 14,5 (28)  Once again, this is difficult to invert analytically, so we focus
7o on the long-time limit,
where
- KoS™t
eVK? QS ~ 11,5 (34)
Kp =- ﬁ (29) 7Q
xhs cothlkL) for S< «2D, where
and _ €Vk[1-seclkL)] (35
3\ 1 1 Q~
cotr(KL)<1 + —S) - ZkhsCSCH(kL) - — tank(xL) + ks
2L 2 kL
r=— . and
P kD 1+ k\gcoth(kL)
1 3\s
(30) 1+ =sech(xL) + —>
Si the Laplace transform of 1-déxp/7,) is S/(1 Q= L 2 oL
Ince - To Q~
+8Sr,), this result clearly shows that the buildup of the «D fanfld) + ks
charged screening layer occurs exponentially over a charac-
teristic response time given by E@O0), which is of order, sectixL)tanh(«L) 1 36
L/kD=\pL/D=7, for both thin and thick double layers. 21— sechel)]  24L )" (36)

Corrections introduce other mixed scales involving the Stern
length, such as\sL/D and Ag\p/D, as well as the Debye In the limit of thin double layers, the same basic time scale,
time, )\%/D. 7.=L/kD=\pL/D, arises as in the case of the surface charge
Note that the same time scale can also be seen in thdensity. A subtle observation is that the relaxation of the total
linear response to a weak oscillatory potential, interfacial charge, although still exponential, has a somewhat
=+VRe(€“7), which naturally leads to different time scale as a function eE=N\p/L and 6=Ag/\p
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(b) ac  dp
1.5 15 T —+p—=0, 40
o TP o (40)
dp ¢
—+c— =0, 41
10 1.0 .\ o  Cax (41)
— 56
- e— =4, 42
05 0.5 YT % ¢ (42)
and initial conditionsg(x,0)=1, p(x,0)=0, and¢(x, 0) =vx.
: , Note that the limit of a negligible screening leng# 0, is
0.0 M 0.0 o singular because it is impossible to satisfy all the boundary
00 05 1.0 15 20 00 05 10 15 20 conditions whene=0. Physically, this corresponds to the
2 € limit of exact charge neutralityp=0, which is always vio-

lated to some degree at electrochemical interfaces.

FIG. 2. Analytical results for the exponential relaxation time The total diffuse charge near the cathode is

from the linear theory for weak applied potenti@i6<kT/ze). The
time scale for relaxation of the surface diffuse-charge density, 0

from Eq.(45) is shown in(a), and that of the total interfacighalf- q(t) = f p(x,t)dx, (43
cell) diffuse chargetq, from Eg. (50) in (b). In each case, the -1

charging time, scaled te.=L/xD=\pL/D, is plotted versus the
dimensionless diffuse-layer thicknegs;\p/L, for different dimen-
sionless Stern-layer thicknessé&s;\s/A\p=0,0.1,1,10(solid, dot,
dash, and dot-dash lines, respectiyely ap L)

jp=—+cCc—, 44
IF= o Cax (44)

scaled to 2eGL. The dimensionless Faradaic current den-
sity is

(see Fig. 2 beloy This apparently new result shows that e
charging dynamics has a nontrivial dependence on time angcaled to 2eGD/L (Nernst's diffusion-limited currer{i98]).

space, even for very weak potentials. B. Time scales for linear response

V. DIMENSIONLESS FORMULATION AND NUMERICAL The time scale for exponential relaxation of the surface

SOLUTION charge density in the linear theory above, E20), has the

A. Basic equations dimensionless form,

In preparation for analysis of the full, nonlinear problem, ‘= (1+358e/2)cothe™!) - Scsch(e /2 - € (45
we cast it in a dimensionless form usihgas the reference P 1+ Scothe™) '
length scale and,=\pL/D as the reference time scale, as o ) ]
motivated by the linear theory. Time and space are then reXS Shown in Fig. 2a), this formula shows that for a wide
resented byt=7D/\pL andx=X/L, and the problem is re- range_of diffuse and Stern layer thlckn_esses,_the basic time
formulated through reduced variables: (C,+C_)/2C, for ~ Scale is always roughly of orderpL/D, sincet, is of order
the local salt concentrationy=(C,—C_)/2Cy=pe/ (2C,z® 1. In @he limit of a thin diffuse double layer, the dimension-
for the charge density, an@l=zed/kgT for the electrostatic less time scale has the form,
potential. The solution is determined by only three dimen- 1 35-2 o
sionless parametersi=zeV/kgT, the ratio of the applied b=1,5" (2(1 +5))6+ Oo(e™ ), (46)
voltage to the thermal voltage=\p/L, the ratio of the De-

bye length to the system size, afdd\s/\p, the ratio of the  with exponentially small errors. In the limit of a thin Stern

Stern length to the Debye lengfB8]. layer, the time scale becomes
With these definitions, the dimensionless equations for 1 1 1
—1<x<1 andt>0 are t,=cothle ") — e+ [5e coth(e *) — 2 cotl(e )
)
g 63(10 R p@), - - escff(e ] +0(8. (47)
ot OX\ dX oX

For simultaneously thin Stern and diffuse layers, we obtain

dp _ 6&(@ .\ C&¢>) | (39 the simple result,
g M\dX X t,~1-e-4, (49)
P which, as in Fig. 2a), shows that increasing eithee=\p/L
e etk (39 or 5=\g/\p tends to reduce the charging time in this limit,
compared to the leading-order valugyL/D. Putting the
with boundary conditions at=+1, units back, this expression can be written as
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Aol A3 AL 010 25
"D Db D (49 ooy 22l
0.06. % 1 181y
for )\S<<_)\D<L, which clearly shows the Debye timle?D/D, 2 gm \j\\\ 1240 ‘\;\\‘
appearing only as a small perturbation of the intermediate 0.02 b AN | o,
time scale\pL/D, for the relaxation of the cell. DOl SRR ' \\‘\24’;}
Similar results hold for the relaxation time for the total 0.00 [ — 0.0 —== e—
half-cell charge, Eq(36), which has the dimensionless form, @ -1.00 -0.90 -0.80 (b-)1.00 -0.90 -0.80
a X X
1 3de
1+=sech(el) +— 0.10 . . 2 7
. 2 (€ 2 & seclieHtanhe™) A ‘)
Q tanh(e ) + & 2 2[1-seclie D] 0.05 ’ ;,..."—T:)Ii’ 1 A f.'}
(50) <= 0.00 ;:- :__—;,.':3, Ezi=2 ] & 4_____:??; ()
For thin double layers, we obtain the same leading-order -o05 f;’, - {4 é’, -
behavior, »
-0.10k 2k
1 1-28 1 -1 0 1 -1 0 1
to~—=- +0(e€ ), 51 X X
e~ I+s {2(1+5)}6 (e°) B (o ()

although the correction term is somewhat different for thick FIG. 3. Profiles fort=0 (solid), 0.1 (dot), 0.5 (dash, 1 (dot-
diffuse layers. For simultaneously thin diffuse and Stern lay-9ash, 2 (dot-dot-dot-dash = (long dash of the dimensionless

ers, the dimensionless relaxation time for the total charg&harge density(x,t) for dimensionless voltage) v=0.1 and(b)
becomes v=2, and of the dimensionless potentialfor (c) v=0.1 and(d)v

=2(e=0.05,6=0.1).

to~1-=-06 52
Q 2 (52) (t<1), since the dimensionless voltage across the diffuse
layer remains small<1). Forv =1, the linear approximation
is reasonable for all times, but for somewhat larger voltages,
v=2, 3, and 4, the relative error becomes unacceptable at
long times,t>1. Not only is the limiting value of the total
charge significantly underestimated, but the dynamics also
continues for a longer time, with a qualitatively different
_ _ ) _charging profile. The largest applied voltages4, shows

Our dimensionless model problem, stated in Sec. V A, ignjs effect most clearly, as there is a secondary relaxation at a
straightforward 'Fo _solve, numerically, gsing finite differ- much larger time scale of ordér1/e=20. Unlike the other
ences, at least it is not too small.(Ironically, as shown cases, which display the expected steady increase in charge
below, analytical progress is much easier in this singulagf an RC circuit, for v =4 the total charge quickly reaches a
limit.) To resolve the boundary layer where the gradient ispaximum value, after the initigRC charging process, and
large, a variable size mesh is used, along with second-ordefnen slowly decays toward its limiting value.

accurate differencing that accounts for the variable grid e are not aware of any previous theoretical prediction of
sizes. The third-order Adams-Bashforth method is used igch a nonmonotonic charging profile, so it is a major focus
time. The number of the grid points and the ratio of thegt this work (in Sec. VIl and VII. It is reminiscent of the
smallest to largest grid size are varied depending on the valyarhurg impedance due to bulk diffusion of current-carrying
ues ofe andv. The numerical convergence is verified thoughijgons at the time scaley =L2/D, or 1/e in our units, in(lin-
multiple runs of differe_nt resoluti_ons, and_as a result, up toea,) response to Faradaic processes, which consume or pro-
1024 points are used in calculations for higber _duce them at an electrode. Here, however, there are no Fara-
To maximize the importance of diffuse charge, we firstgaic processes, so any such bulk diffusion must be related to
consider a rather larger value of even for a micro-  the adsorption or desorption of ions in the diffuse part of the
electrochemical systemg=0.05, say forap=5 nm andL  qouple layer. Moreover, the overrelaxation of the charge den-
=0.1um. The Stern length is always of molecular dimen-;ty is part of thenonlinearresponse to a large applied volt-

sions, so we chooses=5 A, and thus5=0.1. The time evo-  4qe 50 it will require more sophisticated analytical methods.
lutions of the charge and potential are shown in Fig. 3 for

v=0.1 andv=2. At room temperaturéandz=1), these volt-
ages correspond tg=2.5 and 25 mV, respectively, which, VI. WEAKLY NONLINEAR DYNAMICS
when transferred to the diffuse layer after screening, give
maximum electric fields of the order 10 Ym.

The currentj, and the total cathodic diffuse chargg are The remarkable robustness of the charging time well into
plotted versus time, in Fig. 4 for applied voltage$,=1,2,3, the nonlinear regimgat least for the primary relaxation
and 4. In all cases, the linearization is accurate at early timeghas¢ can be predicted analytically using matched

For a detailed summary of how the two time scatgandtg,
depend on the parameteksand &, see Figs. @) and 2b),
respectively.

C. Numerical solution

A. Asymptotic analysis for thin double layers
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1.0 ' ' ' ' the regime where such conditions hold as “weakly nonlin-
0.8F . ear,” as opposed to the “strongly nonlinear” regime, where
08 the asymptotic expansions break doydescribed below in
= | ] Sec. VIII).
© 041 . . .
e B. Outer and inner expansions
02 B \\.".:\-;v- T . . . .
0.0 mvmesao. We begin by seeking regular asymptotic expansi@es
: 0 1 2 3 . 5 noted by a bar accenin the bulk “outer” region, e.g.,
(@ t C(X,t) ~ CX,t) =Co+ €0y + €5, + ... (53)
1ol _Substituting such expansions.into Eq37)—(39) and equat-
ing terms order by order yields a hierarchy of partial-
<08l | differential equations. At leading order & we find that the
g bulk concentration does not vary in time,=1, simply be-
04l | cause the charging time scatg is muchsmaller than the
' bulk diffusion time scaler,. The leading-order potential is
0.0 linear,
0 1 2 3 4 5 — =
(b) t $o=jo(OX, (54)
1.4 " " " " " wherej_o(O):v. Since the leading-order bulk concentration is
T T uniform, jo(t) is the leading-order current density. The
) 120 7 e 3 leading-order charge density
o '_/,." ____________________
L g —_ 0
0.8

vanishes because the leading-order potential(®4j, is har-
© 0 5 10 1t5 20 25 30 monic, although at next ordéd(€%), a nonzero bulk charge
density, p3, arises due to concentration polarizati@ee be-
FIG. 4. (a) The dimensionless current densijyt) (in units of ~ 10W). These arguments justify the usual assumption of bulk
2zeGD/L), and (b) the dimensionless total diffuse charge on the €lectroneutrality to high accuracy, even during interfacial
cathodic side of the cellg(t) (in units of 2eGL), scaled togq,  charging, as long as the dynamics are “weakly nonlinear.”
=v/(1+46), versus dimensionless time,(in units of 7,.=\pL/D). The regular outer approximations must be matched with
Numerical results for dimensionless voltages,1 (dot), 2 (dash, 3 singular “inner” approximations in the boundary layers. The
(dot-dash, and 4(dot-dot-dot-dashare compared with linear dy- problem has the following symmetries about the origin:
namics in the thin double-layer limitg(t)/q,~1-e1*9 and

j(t)/v~e1*9t (solid lineg asv,e— 0. The breakdown of linear c(=xt=c(x1),
thsofry floru =1 .is highlighted in(c), where the data ifb) is replot- p(=x,t) == p(x,t), (56)
ted for longer times.

et H=x0 == px,0),

asymptotic expansions in the singular limit of thin double gy \ve consider only the boundary layer at the cathode,

layers, e=\p/L<1. Most (if not all) previous studies of __; " yransforming the equations to the inner coordinate,
time-dependent problems using asymptotic analysis hav§:(x+l)/e

scaled time to the diffusion time; =L?/D. In this section,

we will see how the correct charging time scale, K o (éé 0(75)
=\pL/D, arises systematically from asymptotic matching at e—=—|—+p— ], (57)
leading order. We also consider, the general case of arbitrary aay\y
voltage, v=zeV/kgT, and Stern-layer thicknes®=\g/\p, _
with a time-dependent zeta potentigé., potential drop over dp_d(dp _dp
the diffuse layer. We also study higher-order corrections, - ay O',_y+cg ' (58)
which involve some bulk diffusion at the time scaie
As usual, matched asymptotic expansions only produce a Py
series of “asymptotic” approximations to the solution, in the _oé =D. (59

sense that higher terms in the expansions vanish more ay?
quickly than the leading terms as— 0, with the other pa-
rameters,y and &, held fixed at arbitrary values. For any
fixed e>0 (no matter how small there could be
e-dependent restrictions om and & for various truncated
expansions to produce accurate approximations. We refer to c(x,t) ~Cy,t) =Cp+ €&, + €Cy + ... (60)

This scaling removes the singular perturbation in Poisson’s
equation, so we can seek regular asymptotic expansions for
the inner approximation@enoted by tilde accentse.g.,
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Matching with the bulk approximatioria spaceinvolves the C. Time-dependent matching

usual van Dyke conditions, e.g., It seems we have reached a paradox: Both the bulk and
lime(y,t) ~ limc(x,t), (61  the boundary layers are in quasiequilibrium at leading order,
y—w x—-1 and yet there must be some dynamics, if we have chosen the

proper time scale. The resolution lies in taking a closer look
at asymptotic matching. Physically, we are motivated to con-

\évr? Wé” r?(l:i?ohneil;/gdtiﬁ ?;‘f f#re;:l%l}g? ev)\(/ga\r/]vsilllo EZ\?eretgrOps'ider the dynamics of the total diffuse charge, which has the
y Sy P ’ scaling,q(t) ~ €q(t), where

worry about the appearance of multiple time scales at differ-

ent orders. °°
Substituting the inner expansions into the rescaled EQs. Q—f

(57«59 causes the time-dependent terms to drop out at

Ieading order. Physically, this quasiequilibrium occurs be-Taking a time derivative using Eq58) and app|y|ng the

cause the charging timey, is muchlarger than the Debye no-flux boundary conditioi41), we find

time, 7p, characteristic of local dynamics in the boundary

which impliesCy(e,t)=cy(—1,1), T1(,t)=c,(-1,1), etc., but

Ply,Hydy ~ o+ €Gy + € + -+ (71)
0

layer (at the scale of the Debye lengtky). As a result, we dg_ 1(dp _dd ) dp _d¢
systematically arrive at classical Gouy-Chapman profiles for at lel; EY re )T Xl'f_‘l xS/ (72)
the equilibrium diffuse layer at leading order,
- _ _ where we have applied matching to ttherivatives(flux den-
T, ~ e"¥, €y =coshyy, po=— sinhiyy, (62)  sities. Substituting the inner and outer expansions yields a

where the excess voltage relative to the bulk, hierarchy of matching conditions. At leading order, we have

- ~ — -~ - a6, = —
HyO=By0 - ¢ 10~ Yo+ éla+ .., (69 2 =Tal, (73

satisfies the Poisson-Boltzmann equation at leading order, which shows that we have chosen the right time scale be-

21710 - cause this is a balance @(1) quantities. Moreover, any

——> =sinhyy. (64) other choice of scaling would lead to a breakdown of

N asymptotic matching in the limié— 0. (For example, in the
Note that matching impliegjo(ce,t) =g (c,t)=---=0. The analogous equationg2) and (43) of Ref. [4] for small ac

potentials, the time-dependent term vanishes in this limit,
showing that the proper scaling was not usdtherefore, the
correct charging time scale, E@), in the weakly nonlinear
regime follows systematically from time-dependent
asymptotic matching at leading order.
05 ag (9550 The physical interpretation of E¢73) is clear: At leading
—(o0,t) ~ e—(=1,t) —» —(o0,t) =0, (65  order, the boundary layer acts like a capacitor, whose total
%y X %y charge(per unit areg G, changes in response to the transient
to obtain Faradaic current density(t), from the bulk. The matching
ﬁT// condition can also be understood physically as a statement of
Yo 5T current continuity across the diffuse layer. Substituting Pois-
=~ 2sinfyy/2). (66) son’s Eq.(59) into Eq. (7)), integrating, and matching the
electric field using Eq(65), we see that the left-hand side of
Eq. (73) is simply the leading-ordetdimensionlesk dis-

dimensionless zeta potentidl) = (0 ,t) varies as the diffuse
layer charges.

After the first integration we apply matching to the elec-
tric field,

After the second integration,

Tpo(y,t) = - 4 tank (e kW), (67) ]E)al‘igement current density8-100,102 at the cathode sur-
we are left with a constant, ’ & .(;5
- Qo _ d dog =
K(t) = log cotH— Z4(t)/4], (68) ot gg(o,t) =Jo(0), (74)

to be determined frongy(t) (below) by the Stern-boundary so the matching condition simply readgt)=jo(t). This
condition at the cathode surfacg=0, and the coupling to  transient displacement current exists in the external circuit,
pears in the concentration and charge density, In passing, we note an important difference in the present
Bo(y,t) = 1+ 2¢schly + K(D)], 69 nonlinear regime between our problem of a pulsed constant

oly:V) ly+K(©] (69 voltage and that of an ac voltage of frequeneyThe exter-
~ nally imposed ac period introduces a new dimensionless pa-

= + + '~ . . i
Poly,t) = 2 cschy + K(v Jeottty +K(v], (70) rameter,o=w7;, which can affect the dominant balances in

is quite sensitive to Faradaic reactidi®8], but here we fo- the equations. We expect our asymptotic analysis to hold for
cus only on the effect of compact-layer capacitance. 0=0(1), for blocking electrodes, but, if Faradaic processes
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are allowed, the leading-order response at low ac frequency, v
@=0(e), may involve bulk diffusion at the slow time scale, I's | ‘
7.. At high ac frequencyw> 1, the fast Debye time scale, | ‘
70, becomes more important. F@=0(1/¢), the double

layer is driven out of equilibrium, with little screening of the
bulk electric field. At even larger voltage®>1/¢, there is
negligible electrochemical transport, although there may be a

Cy Cp Cp Cq
frequency-dependent dielectric respon@®ot considered R
here. In principle, each of these cases of strong ac forcing B
should be treated separately.
D. Leading-order dynamics

Using EQs.(59), (65), and(66), the integral in Eq(71) . FIG. 5. Sketch of the equivaleRC circuit for the leading-order
can be performed at leading order to obtain the Chapmangeakly nonlinear approximation: compact-layer and diffuse-layer

formula for the total diffuse charge, capacitors in series with a bulk resistor. Although remarkably ro-
- bust, the circuit approximation is violated by higher-order correc-
To=—2 sinl{y/2). (75  tions, especially at large voltages.
The Stern boundary condition, E@l2), then yields o(1 — @)
L . Golt) ~ (81)
Lo+ 26SinN(Zo/2) = jot) — v = T, (76) ° 1+5

As shown in Fig. 4 for6=0.1, the linearization describes the

whereW(t)=—v—¢(-1,0) ~Wo+ ¥y +... is thetotal voltage charging dynamics fairly accurately, even for somewhat
across the compact and diffuse layers. Substituting into thParge voltagesv ~ 1), as long as? is not too small. One way

m’.ittchmgb(iondnptﬂ, E?af’r)]’ vlve gbtaln 3” c:jrdlnballry,l initial- it to understand this is that the total differential capacitance
value problem, either for the leading-order double-layer volt- i fies the uniform bounds,

age,
1 - - 1
1+ =Cy(0) = Co(¥g) < Cy() = 5

o d‘i’o 5 5 (82)
—Co(Wo)——~ =W¥o+v, ¥(0)=0, (77)
dt . : : . . .
in the linear and nonlinear regimes. Moreover, the lineariza-
or for the leading-order current density, tion is always accurate at early timagp tot=1 or r= 1)
for any applied voltage, as long as the initial zeta potential
o dﬂ, L (or diffuse charggis small. This is also clearly seen in Fig.
Co(jo_U)E:‘jo, jo(0)=v, (78) 4.
The dynamical Eqg.77) and(78) are first order and sepa-

~ o~ ~ . . . rable, so their exact solution is easily expressed in integral
where Cy(Wo) =d¢,/dW¥, is the differential capacitance for y exp g

the double layer as a function of its total voltage, relative to
the potential of zero charge. Vo(t) = jot) —v = - FX1), (83)
The effective double-layer capacitance is given by

where
~ 1
Co=——=——, (79 e
° secli{/2) + 6 F(Z)=f CS(+)SU- (84)
0

where ¢, is related toW, by Eq. (76). A similar formula  the jntegral can be evaluated numerically and the total
arises in the classical circuit model of Macdon@b8]. In- charge recovered from the Eq35) and(76). The results in

deed, the leading-order charging dynamics from asymptotigg g show that the leading-order dynamics compares fairly
analysis corresponds exactly to the nonlindC circuit  \ye| with the numerical solution to the full nonlinear prob-

shown in Fig. 5. We expect, however, that #hoccircuit  |om for €=0.05 ands=0.1, at least for the decay of the

approximation cannot describe higher-order asymptotic aps,rrent density, especially at early timgs=1). The limiting

proximatio_ns, where the finite thickness of the double IayeR/aIue of the total diffuse charge is also approximated much

becomes important. 5 better than in the linear theolfig. 4), due to the nonlinear
Linearizing for small voltagesC,~1/(1+4), we obtain  differential capacitance, E¢79). For large voltage$y > 1),

the same results as before in the lirait-0, now by a com-  however, total charge shows some secondary dynamics at

pletely different method, longer time scaleét> 1), which is not fully captured by the
_ _ leading-order asymptotic approximatigor the correspond-
jo(t) ~ ve M=y + W (1), (80) ing circuit mode). As we shall see below, this can only be
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1.0 Stern layerss— 0 (taken after the singular limit of thin dif-
08F ] fuse layers,e—0). In this common physical regime, where
06k ] As<<\p<L, the following asymptotic expansions can be de-
= 04 rived by iteration[40] from EQgs.(75), (76), and(79):
2 S, ] ~ = Vo o o
00 S Lo~ Wo- 255|nh7 + P sinhWo+ ..., (86)
0 1 2 3 4 5
(a) t 3 3
1.2 N To~-—-2 sinh?0 + 5sinh@0— 52<sinhl~lfo cosh;o
08 . i~
. 4
g + Sinl’??o), (87)
0.4 .
. . L ~ W ~ ~ s
0.0 Co ~ cosh—2 - §coshW, + 6% cosh¥, cosh—2
) 0 1 2 3 4 5 2 2
t
14 1.~ Wy 3. ., \Tfo)
+ =sinh¥, sinh— + =sinP—-cosh— |. (88
o a A 2 072 27 2 2 ) (©9
12F A A — A — & — —A— — ]
= ~ The response function can then be expanded in somewhat
= 1ok simpler (but still nontrivial) integrals,
% coshl{u/2)du % coshlu)dx
0.8 F(z)~f#—6fL+..., (89
’ 0 u+ov 0 u+uv

in the limit 5— 0. One might worry that the correction terms

FIG. 6. The comparison of the full numerical solution with the above for smalls are no longer small at large voltageky,
leading-order asymptotic resultéa) j/v, (b) q/q;, (early evolu-  but it turns out that once we properly define the “weakly
tion), and(c) a/qin (long time evolution. The full numerical solu-  nonlinear” limit below[via ag<1 in Eq.(131)], the neces-
tion are shown with dofv=1), dot-dashwith open squares itt)]  gr condition,se?02< 1, is automatically satisfied as long
(v=2) and long dash with open trianglés=3). The leading-order as v;:O(é)
asymptotic results are plotted with dagh=1), dot-dot-dot-dash ’
[with filled squares ir(c)] (v=2) and long dash with filled triangles
(v=3). The curves fow=3 are omitted in(@) and (b) for clarity.

The solid lines show the linear dynamics in the thin double-layer

limit. Asymptotic analysis tells us not only the behavior of in-
tegrated quantities like total charge and voltage, but also the

understood by considering higher-order terms which violat&omplete spatiotemporal profiles of the charge density and

the circuit approximation. potential. As usual, uniformly valid approximationgn

For moderately large voltage®~1), we can expand Spacgare constructed' by adding the outer apd inner approxi-
aroundu=v in the integrand of Eq(84) and obtain a long- Mations and subtracting the overlaps. Taking advantage of
time exponential decay, the symmetries in Eq(56), we obtain the following leading-

order approximations:

E. Uniformly valid approximations

Jo() =v + Wo(t) o« €70, (85) 1+x

¢(x,t>~ﬁt>x+7ﬂo( - m)—%(l—gx.t), (90)

ast— o, This reveals gdimensionlesscharacteristic time,

t.=Coy(v), which is larger than that of the linear regintg,

=Co(0)=1/(1+0), by at most a factor of +1/5 (=11 in our c(x.0) ~'60(1l(,t> +EO<1;X,t) -1,

numerical examplgsAlthough this factor is non-negligible, €

the characteristic timer, is still the basic time scale, rather

than 7, and =, which differ from 7, by factors ofe, i.e., 14X 1-x

usually two or more orders of magnitude. As the voltage is p(x,1) ~710<—,t) —770(—,t>, (92)

increased, however, nonlinearity always becomes important, € €

and one of its generic effects is to slow down the relaxationwhere the boundary-layer contributions are given by Egs.

process. (67)«70) and Eq.(76), which express the effect of the com-
In order to simplify the response functidf(z), and other pact layer. The time dependence of the leading-order ap-

guantities, it is useful to consider the regular limit of thin proximations is entirely determined by the bulk current den-

(91
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sity, jo(t), or the double-layer voltagel(t), via Egs.(83)  the cathodic diffuse layew(t)=€w(t), where
and(84). w
As shown in Fig. 7, the time-dependent approximations  {(t) :J [C(y,t) = Co(— 1,) ]dy = Wo(t) + €Wy (t) + ...

for ¢ andp are in excellent agreement with our numerical 0

results well into the nonlinear reginte=1), even for a fairly (93)

large boundary-layer thicknese=0.05. The charge density

clearly shows the expected separation into three regions: ia analogous to the scaled total diffuse charg). [Note

neutral bulk with two charged boundary layers ©fe)  thatcy(-1,t)=1 in our model problem, but E¢93) is more

width. On the other hand, for the same parameters, thgenerall We proceed with matching in the same manner as

leading-order approximation af is not nearly as good. As above. Taking a time derivative using E&.7) and applying

expected, the concentration exhibits a homogeneous bulk réhe no-flux boundary conditio®0), we find

gion and two inhomogeneous boundary layer©6f) width, 5 n

which are fairly well described, but there are also intermedi- dw 1(dc _o¢p ) ac  _d¢
<—+p—)~ lim (—+p&). (99

ate regions of depleted concentration extending far into the dt = lim = ay IX
Substituting the inner and outer expansions yields another

bulk, which are not captured at leading order.
hierarchy of matching conditions. At leading order, we have

y—% € X—=1

VIl. HIGHER-ORDER EFFECTS

A. Neutral-salt adsorption by the double layer d_v‘/o(t) - l%(t) - ﬁ(_ 11) (95)

We have seen that each diffuse-charge layer acquires an dt e dt oX
excess salt Concentration_relativ_e to the outer region._At 'ea%hich, unlike Eq.(73), involves anew time variable
ing order, however, there is no sign of how the extra ions got
there. This paradox, which also applies to circuit models, is — €T T
apparent from symmetry alone, E¢6), in that diffuse =Et=7=:’ (96)
charge near the cathode grows by bulk electromigration, c 't
which creates equal and opposite diffuse charge near the asealed to the bulk diffusion time; =L?/D. Physically, this
ode. In contrast, the excess concentration is the same in bothatching condition simply expresses mass conservation: The
double layers, so it can only arrive there biffusion of  (zeroth orderexcess concentration in the diffuse layer varies
neutral electrolyte from the bulk, which is excluded at lead-in response to théfirst-orde) diffusive flux from the bulk.
ing order. In Eqg. (93), the left-hand side is given by the leading-
The key to understanding higher-order terms, therefore, isrder inner approximation calculated above. Substituting Eq.
the total excess concentration per unit surface arqady  (69) into Eq.(93), integrating, and using E¢68) yields
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dWp d - Vscoshxo) (%~
—(t) = 2—cothK(t) Ci(x,9)=———— | €S (t/e)dt
dt dt l( ) Sinf‘(\rg) o O( E)
d . _
:2—coshém = f €St (x, t)dt, (100
_ _ Go(t) ddo(t) (97)  Wheref() is determined byo(t) from Eg.(98). The pref-
2 dt’ actor,
é(S) - M (101

where we have used the identity cogt¥2coth log tante.
Recall that the leading-order zeta potent?}@(,t), is related
via Eq. (76) to the leading-order bulk current dens@(t),
or interfacial voltage,qfo(t), given by Egs.(83) and (84).
Integrating Eq.(97) and requiringiw,=0 forzo=0, we also

~ . [\
Vs sinh(vs)

is the Laplace transform db(t), the Green function for the
diffusion equation, Eg(99), for a sudden unit flux of ions at
time t=0" injected at the boundary,

obtain a simple expression for the excess concentration, G(x,0)=0, ﬁ(_ 1.0 = 6'0). (102)
X
~ The same Green function also arises in the equivalent prob-
o = 4 sinh’-%’, (9g)  lem of an initial unit source adjacent to a reflecting wall,
G, | —
G(x,0) = 8(x + 1), 5(— 1,t)=0. (103

which also holds for the static Gouy-Chapman solution. Of ) ) ) )
course, this is another sign thit leading ordera thin Ip this form, the Green function can be obtained by inspec-

double layer stays in quasiequilibrium, even while chargingtion:

Before proceeding to calculate the bulk dynamics, we 1z -
comment on the sign of the excess concentration in the dif- G(x,t) = /—__E g (x-2m+ D74t (104)
fuse part of the double layer, which corresponds pmsitive Vart m=—

adsorption of neut(al sallt. This is consistent with the Gouy—using the method of images.
Chapman theory, in which counterions are attracted more™ ~ = )
than co-ions are expelled upon charging, thereby increasing Sinceci(x,s) is expressed as a product of two Laplace
the total density of ions and depleting the bulk. In contrast{ransforms, Eq(100), the inverse is equal to the convolution

Lyklema discusses negative salt adsorption during doubledf the two original functions,

layer charging(the “Donnan effectf, which increases the - T T
nearby bulk concentratioffsalt sieving” [29]. Our analysis c(x,t) = —f dt’'G(x,t’ —t)—_°<—). (1095
shows that this can only occur if ions are injected into the 0 a\€

solution at anonblocking surface. This form clearly demonstrates that the boundary forcing

occurs over the fast, charging tintet/ €, while the response
described by the Green-function kernel occurs over the slow,
diffusion time,t. The separation of time scales is apparent in

We now proceed to calculate how the bulk concentratiorfhe equivalent expression,

B. Bulk diffusion at two time scales

is depleted in time and space during double-layer charging in t ~ .,

our model problem. The matching condition, Eg5), seems cy(x,t) = _J dt'G[x, e(t’ —t)]tan?‘(M)E(t’),

to contradict the analysis above, since it introduces a new 0 2

time variable t. However, this is the same time scale for the (106)

first-order(diffusive) dynamics in the bulk,
which can be derived from Eq105 using Eq.(97). This
form shows explicitly how solution for the current at leading

gc, 1dc, ¢ order, Eq.(83), fully determines the bulk concentration at
E—‘ cd ol (99 first order.

Before further analysis of the exact solution oKX, t),
we describe it qualitatively. The bulk concentration at first
We must solve this equation starting fraq(x,0)=0 with a  order exhibits diffusive relaxation at two different time
time-dependent prescribed flux et -1 given by Eqs(95)  scales, t=t/e=0(1) and t=et=0(1), or with units, 7
and (97). We also enforce symmetry about the origin, Eq.=O(\pL/D) and r=0(L?/D), respectively. The former re-
(56). gime is quite subtle and merits further explanation. The ini-
The Laplace transform of the solution is tial double-layer charging process fisrO(e) proceeds with-
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1.02f sion of neutral-bulk electrolyte slowly fills in the depleted
zones, until a uniform equilibrium state is reached. During
this stage, diffusion layers spread across the cell from the

1011}
: electrodes, while the double layers remain in quasiequilib-

o 100}

rium with the evolving bulk concentration.
0.99 C. Evolution of the diffusion layers
0.98 \ In the previous section, we derived the time-dependent
"0 outer approximation, Eq53), to first order,
@ : b _
X © X Tlx,t) ~ 1+ €ecy(x,b), (107)
052 1.2 ; which displays dynamics at both thiC time and the bulk
1ol diffusion time. The result, Eq$104)—106), is fairly compli-
0.51 ' cated, so in this section we try to gain some simple analytical
‘ 0.8} insight. In the limite— 0, the initial charging process at the
& 050 time scaleé=0(e) is instantaneous, and we are left with only
08 the slow relaxation of the bulk diffusion layers. Explicitly
049 04f e taking this limit in Eq.(100) with T=et fixed,
os8l Dokl lIMCy(x,1) = = Wo(>2) Gx.D), (108
1.0 0.5 00 -1.00 -0.95 -0.90 e—0
() X (d) X

we see that the slow-scale evolution of the diffusion layers is
FIG. 8. Weakly nonlinear dynamics far=1, €=0.05, andé  given by the Green function(x,t), with a source of
=0.1, showing the effect of bulk diffusion. The concentration from strength, (), equal to the leading-order total salt adsorp-

the full numerical solution is shown in tl{e) half cell and in theb) . : Hh T (00) = e
diffuse layer fort=0.5 (solid), t=1 (dob, 2 (dash, 4 (dot-dash, & gilr;nAg;ordmg to Eqs(76) and (98) with j,()=0, this is

(dot-dot-dot-dasf and 20(long dash. Below in (c) and (d) the
individual ion concentrations;,=C+/C,, are shown at=2, near _ _ f"l(v)
the end of the initial charging process. Wo() = 4 sint? ) (109

out any significant changes in concentration at the bulkWhere
length scalex=0(1). During this stage, each diffuse-charge

layer acquires a@(e) amount of excess concentration, given f(0) =+ 28sinh{12), (110
by Eq. (109), which has been acquired by a diffusive pro-
cess. At this time scale, a bulk diffusion Iay_er(bﬁv"e) width
forms near each electrode, so there iSCHRe) depletion of v
the neutral-salt concentration in the bulk diffusion layers. \7v0(oo)=4sinr?‘—1, (111
These scaling arguments are confirmed by Fig) Tor v

=1 and e=0.05, where at time&=1 (or t=¢) the diffusion in the absence of any compact layé&s0).

which reduces to

layers are roughly of width/2t= J2e~0.3. The formation This simple approximation describes two diffusion layers
and spreading of the diffusion layers are also shown in moréreated at the electrodes slowly invading the entire cell. At
detail in Fig. 8. first, they have simple Gaussian profiles,

In summary, our analysis reveals the following physical ~
picture of nonlinear electrochemical relaxatiin dimen- cxt) ~1- EWO—@)[E_(x+ DAy = P (119)
sional terms Vart

(1) Double-layer charging and bulk depletioAs soon as
the voltage is applied, ions move to screen the electric fiel
emanating from the electrodes at the time scaleApL/D.
This stage consists mainly of counterions enteiaigd to a
lesser extent, co-ions leavinghe double layers by elec-
tromigration from the bulk. Once the induced zeta potentia
exceedkT/e, the total ion density in the double layer starts
to increase significantly, due to excess counterions. At first“,:OnStant value,
ttuegtral—salt concentration is reﬂjcgd by a fraction, T ~ 1 — éiig(0), (113
vAp/L, in a narrow region of widthyApL, just outside the o
diffuse-charge layer. These processes continue until the noffier t>1, as expected from the steady-state excess concentra-
linear RCtime, 7. coshzel/ 2kT), where( is the steady-state tion in the double layers(This result may be checked by
zeta potential. replacing the sum in Eq104) with an integral in the limit

(2) Bulk diffusion At the time scalel.?/D, simple diffu- t—o.)

(gort_< 1, which is qualitatively consistent with the numerical
results in Fig. 7c). To attempt a quantitative comparison, we
also need>1 to use Eqs(108) and(104). As shown in Fig.
9, the approximation is reasonable fer3 with an error of
foughly €2=0.0025. The two diffusion layers eventually col-
lide, and the concentration slowly approachesgreduced
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o _ (‘751 c& ‘é%) (118
it ay\ay oy oy
.
, 119
(?y =pP1 ( )

although one still solves a system of linear ordinary differ-
ential equations iry at eacht, sinceCy(y,t), po(y,t), and
Boly,t) are known.

The general problem seems daunting, but some progress
can be made at the scale of bulk diffusidmsO(1) or t
=0(€1), where the leading-order concentration profiles re-
main in thermal equilibrium, without any explicit time de-
pendence. This will give us some insight into secondary

proximate first-order expansion at the diffusion time scale, given bycharge relaxation at the time scale of bulk diffusion. In this

Egs. (108), (104, and (107). Also, shown is the latter plus the |imjt, Egs. (117) and(118) can be integrated to obtain
zero-order inner approximation, E@69), for the diffuse layers

(dasheql ac
B ey s ¢°<y,w> (120
. - ay ﬂy
D. Bulk concentration polarization
As mentioned above, the bulk charge density remains Fr
— . . op1  ~ i d’o
very small, p=0(€%), even during double-layer relaxation, oy ~Coly, ) y (y,oc) (129

but changes in neutral-bulk concentration affect the potential
at first order. Substituting the outer expansions into (88)
and collecting terms aD(e), we have

Iy +E%

o _
0=—(Co2r .
ax(co )

X Lox

after applying the usual van Dyke matching conditions. Sub-
stituting from Poisson’s equatiof,= -3¢,/ dy?, at orders
n=0, 1 into Eq.(120), integrating, and applying matching
(114  again, we obtain

o 2

This is easily integrated usingy=1 to obtain the first-order Ty, t) ~ —(y,oo) Py

contribution to the bulk electric field,

(jil =T - JoUE .,

(yh+e(-1 (122
for t>0 andt=t/e>1. From the previous section, we also
have the leading-order inner concentration,

(119

Bo(Y,%) =Co(— L,t) + 2Eq(y, %), (123

QNhereEo(—l 1)=1 is the leading-order outer concentration,
and

where the second term describes concentration polarization,
i.e., the departure from a harmonic potential, which would b
predicted by Ohm’s law. The first term is a uniform bulk field
(or currenj determined by first-order perturbation in double-
layer charge. This follows from the matching condition, Eq.

(72), at first order, Yoly, )

¢0(y, ) = Zsmh—

Eqly,0) = - (124)

— :j_l(t), (116)  is the leading-order inner electric field in steady state. Fi-

nally, we substitute these expressions into @41) and use
whered(t) is obtained by solving the inner problem at first Ed. (118) to obtain a master equation for the first-order inner

order. electric f|eld,E1(y,t)———(y 1), at the bulk-diffusion time
scale,
E. Perturbations in double-layer structure

Unfortunately, the first-order inner problem is difficult to
solve analytically because the perturbed concentration pro-
files are no longer in thermal equilibrium during the initial
charging phase. To see this, note that the time derivatives i
Egs.(57) and(58) contribute nonzergbut knowr) terms at

A [ a.
W: 1+EEO E1+C1E0.

Ems linear equation with a nonconstant coefficient must be
solved subject to the boundary condmoﬁ_(oc 1)=0 and

(129

first order, El(O,t)——ql(t). The perturbation of the total chargg(t) is
obtained by another integration of the field to get the first-
Ho _ ((75 07(1’1 o ) (117  Order inner potential, while applying the Stern boundary con-
a g\ ay TPy TPy dition.
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For our purposes here, it suffices to point out that thanduced zeta potentigtesulting from diffuse-charge dynam-
spatial profile of the first-order inner electric field in Eq. ics). In Dukhin’s problem, the former may be large,
(125 varies with the outer concentration;(-1,t), at the  Du(Ze)>1, but the latter is always smallj,y<kT/zg so
slow time scale of bulk diffusion. Notably, this can lead to athat the charging dynamics are linearized ignored. In our
secondary relaxation of the total diffuse charge, in responseodel problem, the situation is reversed: We assyge0
to the evolution of the diffusion layers. We observe this slow(for simplicity), but we allow for a large applied voltage,
relaxation phase in our numerical solutions of the full equa<ing=v/(1+6)>KkT/ze in which case the dynamics are non-
tions, especially at large voltages. In particular, it is presumiinear. In both cases, the steady state is well described by
ably associated with the nonmonotonic charging profile forweakly nonlinear asymptotics as long ag(io) =Du({io)
v=4 shown in Fig. 4c). A detailed analysis of this interest- <1. When this condition is violated, double-layer charging
ing effect from the setup above would require solving theand surface conduction may cause significant changes in the
first-order inner problem numerically, so we leave it for fu- steady-state bulk concentration.
ture work.

B. Breakdown of weakly nonlinear asymptotics

VIIl. STRONGLY NONLINEAR DYNAMICS In general, weakly nonlineadynamicsbreak down at
somewhat smaller voltages, whetg,>kT/e but ay({)
=Du({q) <1, because neutral-salt adsorption causésna
We stress again that the asymptotic expansions derivegorary, local depletionof bulk concentration exceeding that

above are valid in the limit of thin double layeks;~ 0, with  of the steady state, after diffusional relaxation. In our model
the other two dimensionless parametergapplied voltage  problem, the maximum change in bulk concentration occurs
and & (relative compact-layer capacitancéeld constant. just outside the diffuse layers at+1, just after the initial
For any fixede>0, there is no guarantee that the approxi-charging process finishes at time scafe] ort=e. From Eq.

mation remains accurate as the other parameters are variqd12) we have the first two terms of the weakly nonlinear
Having just calculated the bulk concentration to first order ingsymptotic expansion there:

the regular expansion, E¢53), we can now checl poste-
riori under what conditions it remains a good approximation. €.
c(xl,6) ~1 -/ —Wy().
a

A. Steady state and the Dukhin number

A simple check involves the constant bulk concentration, (129

Eqg. (113, after the charging process is completed. The as-
sumption that the first correction is much smaller than theat that time, the newly created diffusion layers have spread
leading term requiress= eW(>) <1. Linearizing Eq.(110  to O(\e) width, so the concentration is depleted locally by

for 6<1, we can write this condition in a closed form, O(elJe)=0(\'e), which is much more than the unifor@ e)
v depletion remaining after bulk diffusion.
de sinhz< ) <1. (126 Therefore, in order for the time-dependent correction term

41+9) to be uniformly smaller than the leading term, we need
Putting the units back, we have

= \F\Tv (o) = == <1 (130)

4\ z ag = —Wp == <1.
al(&y) = fsinﬁ(%) <1, (127 ™ Ve

. . The relevant dimensionless parameter,
where {,=V/(1+6) is the steady-state zeta potential, long P

after the dc voltage is applied. o z¢f,
The condition,ag(Z5) <1, for the validity of thesteady- ag(Lo) = 4 —Lsinhz(ﬁ), (131)
state asymptotic expansion is identical to that of small 77

Dukhin number, D_LZO)<1,_from EQ.(8) in the limit of N0 5 jarger tham(¢,,) (and the Dukhin numbgby a factor of
electro-osmosigm=0), which may seem surprising since T"L/w)\D in the limit of thin double layers. For weakly non-

there is no surface conduction in our one-dimensional modg|,ear dynamics to hold, the applied voltage cannot greatly
problem.(Hence, we use the symbal rather than DY.The  gyceed the thermal voltage

reason is that in both cases—Dukhin’s problem of electro-

phoresis of highly charged particles in weak applied fields \V kT L

and ours, of electrode screening in strong applied fields—the Liot = P ;'09)\—, (132

double layer absorbs a significant amount of neutral salt from b

the bulk. even for very thin double layers,, <L, due to the loga-
Net charge adsorption relative to the point of zero charggithm. In comparison, the applied voltage can be twice as

is measured by thiotal zeta potential, large before the steady-state bulk concentration is signifi-

lioe= Logt £ (128) pant_ly aﬁec_ted(an_d surfape conduction becomgs important
tot = Seq ™t Sinds in higher dimensions This could have interesting conse-
where{qqis the uniform equilibrium zeta potentigkeflecting  quences for induced-charge electrokinetic phenonj&2a]

the initial surface chargeand {,q is the non-uniform- at moderate applied voltages, wheig>1 but ag=Du<1.

021506-19



BAZANT, THORNTON, AND AJDARI PHYSICAL REVIEW E70, 021506(2004

4 : . 1.10
1@ {100

o of { o 090}

1} 0.80}

0.70

1 0 1 -1 0 1
X X
8 8
6p 6M

-1.0 0.9 0.8 1.0 0.9 08
(b) X (© X

FIG. 10. Strongly nonlinear charging dynamics for4 with e=0.05 and5=0.1. The(a) potential,(b) charge density, angt) concen-
tration are shown in the half cgliop) and in the diffuse layetbottom) for t=0.5(solid), 1 (dot), 2 (dash), 4 (dot-dash, 8 (dot-dot-dot-dash
and 20(long dash.

C. Strongly nonlinear asymptotics €— 0 andv —  with ag(v) >0 fixed, (134

When condition(132) is violated, electrochemical relax- and expect the approximations to remain acceptable at some-
ation becomes much more complicated because double-lay@hat larger voltages, as long ag(v)<1. Such analysis is
charging is coupled to bulk diffusion. As long a&<1,  peyond the scope of this article, but at least we indicate how
however, the bulk remains quasineutral at all times. This rethe leading order approximation would be calculat&@bing
gime of Strongly nonlinear dynamiCS is demonstrated by th%eyond |eading order seems h|gh|y nontri\bia]_
numerical solution in Fig. 10, foy=4, €=0.05, and5=0.1, At leading order in the bulk, we have the usual equations

in which caseay=0.545. In spite of the substanti@(1)  for a neutral binary electrolytavith equal ionic diffusivites,
amount of charge transfered from one diffuse layer to the

other, each retains almost exactly the sabe) width as at iy G, gl 950
lower voltages, and bulk electroneutrality remains an excel- E_: e d— Cog =0, (139

lent approximation for all times. The initial charging process
up tot=1 creates a diffusion layer of neutral salt which
relaxes into the bulk at the scale=1 (or t=t/e = 20).

In the strongly nonlinear regime, i is not too small,
double-layer charging is slowed down so much by nonlinear
ity that it continues to occur as the bulk diffusion layers - —
evolve. One way to see this is that the effectiR€ time for 9o - Jo(t) (136)
the late stages of charging in E@5) is X Co(xt)

with p=0(€?). Integrating the second equation, we obtain a

constant, uniform current densit%(t), as before, but the
electric field is modified by concentration polarization,

The effective boundary conditions come from asymptotic

matching with the diffuse layers as before,
t(v) = Ci(v) = coshy = 2 sin?2 = 25 (133) g y
2 4  2e 0 W e
Qo _— Wo _ 9Co =
e—=jo(t) ande—==—(-1,1), 137
dt ol dt ax( ) (
where we use the leading-order approximation of the differ-
ential capacitance, Eq88), for §<1. In units of the bulk  only now the diffusive flux entering the diffuse layesec-
diffusion time, the nonlinear relaxation timetisset.=a,/2.  ond equatiopappears at leading order. The ionic concentra-
To make analytical progress, one would consider the jointions retain Gouy-Chapman equilibrium profiles modified

limits quasistatically by the evolving nearby bulk concentration,
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o — h(?o(ﬁ) dimensions, as long as the surface curvature does not intro-
Oo(t) == 2Vco(— 1,t)sinhl —— |, (138 duce another length scale much smaller thain that case,
2 the double layers are locally “flat,” and the boundary-layer
calculations remain unchanged. Following the same proce-

N s 126) dure, Weﬂnd that the bulk concentration is uniform at lead-
Wo(1) = 4\Co(~ L,Dsink? ' (139 ing order,c,=1, and the bulk potentialj(r ,t), is a harmonic
function,
where _
V2o =0, (141

Zo® = To®8= Ty = —v — (- 1.0). 140

£o(t) = Co(® ol¥) ol ) (149 subject to adimensionlessRC boundary condition at each
It seems that exact solutions are not possible in terms oflectrode surface,
elementary functions. The equations are “stiff,” since they _
involve a short time scalet=¢, for the initial phases of ﬂ)_~ - _ o= o) _ -

- ; =Clpo—pg)————=n-V ¢, (142

charging, but at least the spatial boundary layers have been at at
“integrated out,” which is convenient for numerical solu-

tions wheren is the unit normal pointing into the electrolyte and

¢e(r,t) is the local electrode potential relative to the solu-
tion. The latter is equal to the local applied voltage plus the
equilibrium zeta potential,

We close this section by noting some intriguing, new pos-
sibilities, further into the strongly nonlinear regime. At large be(r, 1) =V(r, b + Ledr), (143
voltages, such thaty> 1, it seems dransient space charge which accounts for any preexisting double-layer charmge
layer should form, since the bulk concentration would beglected in our calculations aboveA Neumann boundary
depleted almost completely near the diffuse layers by th@condition,n-Vgo, is imposed at any inert, nonpolarizable
initial charging process. In steady-state problems of Faradaigurface, such as a channel sidewall.
conduction, it is well known that double-layer structure is  another complication in two or more dimensions is the
altered from its Gouy-Chapman equilibrium profile at a lim- 5ossipility of electro-osmotic flow. The fluid velocity in the
iting current[135] and may turn into an extended space-p |k ysually satisfies the Stokes equations, which may be
charge layer above a limiting currefit3€], but here we see | nsteady for high-frequency forcing. In the weakly nonlinear
that similar effects may also occur temporarily with large egime, “ the classical Helmholtz-Smoluchowski formula

time-dependent voltages, in the absence of any Faradaic prgjes the fluid slip in terms of the local zeta potential and
cessegat blocking electrodgsAt still larger voltages, such tangential bulk electric field27—29.

thatas>1, ldouble—layer charging consumes most of the bylk Equations141) and(142) model the electrolyte as a bulk
concentration, presumably leaving the entire bulk region in &ypmjc resistor with a capacitor skin at electrode interfaces.

state of “space charge.” . . . .
Such situations may seem quite exotic in macroscopi%he linearized version of these equatignéth C=cons} has

systems, where=\p/L is extremely small, but in microsys- een studied extensively, e.g., in .the context of metallic col-
tems, perhaps they could occur. The mathematical model néq'%s [%ﬁ)&log, ac electro-]?s:md05|§2d—4]ﬁ ac purlnpltng[6], .
glects bulk reactionge.g., leading to hydrogen bubble for- alr123 ;’2 erTE enorr;ena or in uceh ~charge he ec ro-osm<t3|5|s
mation), nonlinear dielectric properties, electroconvection, or[ 124 The nonlinear version, however, has apparently

other effects which may hinder the formation of space chargé]Ot bc_een atmal_y zedr,]_er\]/ etr;] thouQS.t'.t miylrlz/a;ek_:_tlalevar_]ce for
in real systems. Nevertheless, the rich nonlinear behavior gripenments, in whic e condition, <1( z8), is

the model merits further mathematical study, as a challengPutinely violated. S . . .
More significant modifications arise at leading order in

i lem in time- -l h 3
ing problem in time-dependent boundary-layer theory the strongly nonlinear regiméor at higher order in the

weakly nonlinear regime Ohm’s law breaks down due to

concentration gradients, as the double layers absorb a signifi-
We conclude by discussing more general situations, whiclgant amount of neutral salt from the bulk. In two or more

contain some other physics, absent in our simple modeflimensions, the dimensionless leading-order equations for

problem. For thin double layers, the same methods oEy(r,t) and ¢y(r,t) in Sec. VIII take the form,

asymptotic analysis could be applied to derive effective _

equations in which the double layers are incorporated into 9o _ oo 5 =

boundary conditions, better suited for analytical or numerical

\({_)vt(l?lg(r. Sg:ﬁe’l vgfos;énrggyfglsefacr?h'g;estrli?;Its and suggest Som\(/avhere we scale time to the bulk diffusion time. This assumes

ayg<1 so that no transient space charge layers form.
The effective boundary conditions still involve the small
parameterg, as in one dimension, since the natural scale is
In the weakly nonlinear regime, wheag<1 for all times ~ the RC charging time, but there are some new terms in
over all double layers, our analysis extends trivially to higherhigher dimensions:

D. Space charge at very large voltages

IX. BEYOND THE MODEL PROBLEM

A. Two or more dimensions
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o formation), so the potential is determined implicitly by the

T n-(cV ¢) - DuVs- Jg, (149  condition of electroneutrality,
- N
oW, _ ~ - _ _
e?_o =n- Vo DUV (DVp). (146) pe= 21 zeG=0. (149
i=

The I.ast term ".1 Eq(1.45) is the surfa.\ce d|ve~rg.ence OT the These are the standard equations of bulk electrochemistry

(leading-order dimensionless tangential currehtin the dif- [26], but interesting physical effects are contained in the ef-

fuse layer; the size of this term compared to the normal curfgctive boundary conditions.

rent is governed by a Dukhin number, based on the largest Generalizing the total surface charge dengind excess

expected total zeta potential. Similarly, the last term in Eqgface concentratiow, we definel’; to be the surface con-

(146 is the surface divergence of the tangential diffusivecentration of species absorbed in the diffuse layer. To be

flux in the diffuse layer, wher®s is a dimensionless surface precise, it is the integral of the leading-order excess concen-

diffusivity; again, this term is of order Du smaller than the tration relative to the bulk over the inner coordinate, as in

normal diffusive flux. Egs. (71) and (93). For example,g=zgIl',-1"_)/2 andw
Formulas forJ; and D, can be derived systematically us- =(I',+I'_)/2 for a symmetric binary electrolyte.

ing the matched asymptotic expansions, which is beyond the Following the procedure above, the boundary conditions

scope of this paper. The classical results of Bikermarpn the leading-order bulk approximation are of the form,

[119,12Q and Deryagin and Dukhifil4Q] are available for

the case of weak applied voltagég,q<kT/e) and large ar,

equilibrium surface chargeRe,>kT/e, Du({eq ~ 1], and RSl Fi+Vs-Fg+R, (150

many Russian authors have studied electrokinetic phenom-

ena in this regimg33,34. The case of strongly nonlinear . . .
dynamics[¢,.q>KT/e, aq(Zng)= 1], however, should be re- whereF(C;,®) is the surface flux density of speciem the

visited in more detail to see if any changes arise for strongdOUbIe Iayer[l4p] andR({C;}, @) is the react|on.-rate der)S|ty
time-dependent applied voltages. We suggest as a basic opj @ny Faradaic processes consumiagproducing species
question analyzing the electrochemical response of a methft the surface. The usual assumptionRpinvolves Arrhen-
cylinder or sphere in a strong, suddenly applied, uniformUS Kinetics, as in the Butler-Volmer equation, but the
background dc field. Frumkin correction for concentration variations across the
Another interesting issue is the stability of our one-diffuse layer must be taken into accoy@s,2§. .
dimensional solution. One should consider small space- |N€ general system of nonlinear equations is challenging
dependent perturbations of the solution at various large voltl© Solve, even numerically, due to multiple length and time
ages, in both the weakly and strongly nonlinear regimes. Th&c@les. Boundary-layer theory provides only a partial simpli-
general transient analysis in two or more dimensions with thdication by integrating out the smallest length scale. As de-

same equations and boundary conditions presents an intereSgioed in Sec. Il, various special cases of the effective equa-
ing challenge. tions have been considered in the literature, but much

remains to be done, especially for strongly nonlinear dynam-
ics in large applied voltages. In microelectrochemical or bio-
logical systems, this regime is easily reached, so it merits
Even in one dimension, it would be interesting to extendadditional mathematical study and comparison with experi-
our analysis to more general situations involving asymmetrignental data, in part to test the applicability of the Nernst-
or multicomponent electrolytes, which undergo Faradaic proPlanck equations in microsystems. Another interesting aspect
cesses at electrode surfaces. Restoring dimensions, the bugkthe coupling of electrochemical dynamics to fluid flow,

electrolyte is described by the ionic concentrationsC;, i which is finding new applications in microfluidic devices.
=1,2,... N, satisfying mass conservation,

B. General electrolytes and Faradaic reactions

dC;
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